Skip to main content
Log in

Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2[AlSi3O10(OH)2]

  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Althaus, E., Karotke, E., Nitsch, K. H., Winkler, H. G. F.: An experimental re-examination of the upper stability limit of muscovite plus quartz. Neues Jahrb. Mineral. Monatsh. 1970, 325–336

  • Barany, R.: Heat and free energy of formation of muscovite. U.S. Bur. Mines, Rep. Inv. 6356, 6 p. (1964)

  • Barany, R., Kelley, K. K.: Heats and free energies of formation of gibbsite, kaolinite, halloy-site, and dickite. U.S. Bur. Mines, Rep. Inv. 5825, 13 p. (1961)

  • Burnham, G. Wayne, Holloway, J. R., Davis, N. F.: Thermodynamic properties of water to 1000 °C and 10000 bars. Geol. Soc. Am. Spec. Papers 132, 96 p. (1969)

  • Burnham, Charles W., Radoslovich, E. W.: Crystal structure of coexisting muscovite and paragonite. Carnegie Inst. Wash. Yearbook 63, 232–236 (1964)

    Google Scholar 

  • Chatterjee, N. D.: Synthesis and upper stability of paragonite. Contrib. Mineral. Petrol. 27, 244–257 (1970)

    Google Scholar 

  • Chatterjee, N. D.: The upper stability limit of the assemblage paragonite+quartz and its natural occurrences. Contrib. Mineral. Petrol. 34, 288–303 (1972)

    Google Scholar 

  • Chatterjee, N. D.: X-ray powder pattern and molar volume of synthetic 2M-paragonite: a refinement. Contrib. Mineral. Petrol. 43, 25–28 (1974a)

    Google Scholar 

  • Chatterjee, N. D.: Synthesis and upper thermal stability limit of 2M-margarite, CaAl2 [Al2Si2O10/(OH)2]. Schweiz. Mineral. Petrog. Mitt. 54, 753–767 (1974b)

    Google Scholar 

  • Chatterjee, N. D., Langer, K., Abraham, K.: Infrared studies of some synthetic and natural dioctahedral micas. (In preparation, 1974)

  • Coughlin, J. P.: Heats of formation and hydration of anhydrous aluminium chloride. J. Phys. Chem. 62, 419–421 (1958)

    Google Scholar 

  • Day, H. W.: The high temperature stability of muscovite plus quartz. Am Mineralogist 58, 255–262 (1973)

    Google Scholar 

  • Essene, E. J., Boettcher, A. L., Furst, G. A.: Indirect measurement of ΔG for quartz+corundum=kyanite (abstract). Trans. Am. Geophys. Union 53, 554 (1972)

    Google Scholar 

  • Eugster, H. P., Albee, A. L., Bence, A. E., Thompson, J. B., Waldbaum, D. R.: The two-phase region and excess mixing properties of paragonite-muscovite crystalline solutions. J. Petrol. 13, 147–179 (1972)

    Google Scholar 

  • Evans, B. W.: Application of a reaction rate method to the breakdown equilibria of muscovite and muscovite plus quartz. Am. J. Sci. 263, 647–667 (1965)

    Google Scholar 

  • Evans, H. T., Appleman, D. E., Handwerker, D. S.: The least squares refinement of crystal unit cells with powder diffraction data by an automatic computer indexing method (abstract). Am. Crystallogr. Assoc., Cambridge, Mass., Annual Meeting Program, p. 42–43 (1963)

  • Fisher, J. R., Zen, E-an: Thermochemical calculations from hydrothermal phase equilibrium data and free energy of H2O. Am. J. Sci. 270, 297–314 (1971)

    Google Scholar 

  • Fujii, T.: Long order of aluminum and silicon in muscovite. J. Geol. 75, 1–10 (1967)

    Google Scholar 

  • Gross, P., Hayman, C.: Enthalpy of formation of aluminium chloride. Trans. Faraday Soc. 66, 30–32 (1970)

    Google Scholar 

  • Güven, N.: The crystal structures of 2M1 phengite and 2M1 muscovite. Z. Krist. 134, 196–212 (1971)

    Google Scholar 

  • Gunter, A. E.: An experimental study of iron-magnesium exchange between biotite and clinopyroxene. Canad. Mineralogist 12, 258–261 (1974)

    Google Scholar 

  • Hovis, G. L.: A solution calorimetric and X-ray investigation of Al-Si distribution in monoclinic potassium feldspars. In: MacKenzie, W. S., Zussman, J. (eds.), The feldspars, p. 114–144. Manchester: Univ. Press 1974

    Google Scholar 

  • Huang, W. L., Wyllie, P. J.: Muscovite dehydration and melting in deep crust and subducted oceanic sediments. Earth and Planet. Sci. Letters 18, 133–136 (1973)

    Google Scholar 

  • Kelley, K. K., Todd, S. S., Orr, R. L., King, E. G., Bonnickson, K. R.: Thermodynamik properties of sodium-aluminum and potassium-aluminum silicates. U. S. Bur. Mines, Rep. Inv. 4955, 13 p. (1953)

  • Kerrick, D. M.: Experimental determination of muscovite+quartz stability with P H2O < P total. Am. J. Sci. 272, 946–958 (1972)

    Google Scholar 

  • Munoz, J. L., Ludington, S. D.: Fluoride-hydroxyl exchange in biotite. Am. J. Sci. 274, 396–413 (1974)

    Google Scholar 

  • Orville, P. M.: Unit cell parameters of the microcline-low albite and sanidine-high albite solid solution series. Am. Mineralogist 52, 55–86 (1967)

    Google Scholar 

  • Richardson, S. W., Gilbert, M. C., Bell, P.: Experimental determination of kyanite-andalusite and andalusite-sillimanite equilibria; the aluminum silicate triple point. Am. J. Sci. 267, 259–272 (1969)

    Google Scholar 

  • Robie, R. A., Waldbaum, D. R.: Thermodynamic properties of minerals and related substances at 298.15 °K (25 °C) and one atmosphere (1.013 bars) pressure and at higher temperatures. U.S. Geol. Surv. Bull. 1259, 256 p. (1968)

  • Rothbauer, R.: Untersuchung eines 2M1 Muskovits mit Neutronenstrahlen. Neues Jahrb. Mineral. Monatsh. 1971, 143–154

  • Seifert, F.: Stability of sapphirine: A study of the aluminous part of the system MgO-Al2O3-SiO2-H2O. J. Geol. 82, 173–204 (1974)

    Google Scholar 

  • Thompson, A. B.: Gibbs energy of aluminous minerals. Contrib. Mineral. Petrol. (in press, 1974)

  • Thompson, J. B.: Chemical reactions in crystals. Am. Mineralogist 54, 341–375 (1969)

    Google Scholar 

  • Ulbrich, H. H., Merino, E.: An examination of standard enthalpies of formation of selected minerals in the system SiO2-Al2O3-Na2O-K2O-H2O. Am. J. Sci. 274, 510–542 (1974)

    Google Scholar 

  • Velde, B.: Upper stability of muscovite. Am. Mineralogist 51, 924–929 (1966)

    Google Scholar 

  • Waldbaum, D. R.: High-temperature thermodynamic properties of alkali feldspars. Contrib. Mineral. Petrol. 17, 71–77 (1968)

    Google Scholar 

  • Waldbaum, D. R., Robie, R. A.: Calorimetric investigation of Na-K mixing and polymorphism in the alkali feldspars. Z. Krist. 134, 381–420 (1971)

    Google Scholar 

  • Weisbrod, A.: Détermination rapide des variations réactionelles d'entropie et d'enthalpie à partir des courbes expérimentales d'equilibre; tracé rapide des courbes théoretiques d'equilibre. Bull. Soc. Franc. Minéral. Crist. 91, 444–452 (1968)

    Google Scholar 

  • Weller, W. W., King, E. G.: Low-temperature heat capacity and entropy at 298.15 °K of muscovite. U.S. Bur. Mines Rep. Inv. 6281, 4 p. (1963)

  • Zen, E-an: Free energy of formation of pyrophyllite from hydrothermal data: values, discrepancies and implications. Am. Mineralogist 54, 1592–1606 (1969)

    Google Scholar 

  • Zen, E-an: Gibbs free energy, enthalpy, and entropy of ten rock-forming minerals: Calculations, discrepancies, implications. Am. Mineralogist 57, 524–553 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chatterjee, N.D., Johannes, W. Thermal stability and standard thermodynamic properties of synthetic 2M1-muscovite, KAl2[AlSi3O10(OH)2]. Contr. Mineral. and Petrol. 48, 89–114 (1974). https://doi.org/10.1007/BF00418612

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00418612

Keywords

Navigation