Skip to main content
Log in

In vitro release of α1-acid glycoprotein RNA sequences shows fidelity with the acute phase response in vivo

  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

The acute phase reaction of rat liver to subcutaneous turpentine challenge results in a 20- to 100-fold increase in α1-acid glycoprotein (αAGP) mRNA. We utilized this response to establish conditions appropriate for study of RNA transport in vitro using hybridization with 32P-labeled exon and intron αAGP sequences. Contamination of nuclear preparations by membrane-absorbed cytoplasmic RNA was eliminated by detergent-rinsing. The in vitro incubation conditions that most reflected the in vivo state required RNase inhibitor (purified from placenta), polyvinylpyrrolidone to prevent nuclear swelling, and addition of ATP. Under these circumstances, αAGP sequences were transported only from turpentine-stimulated preparations, were found only in poly(A) + RNA, and were the same size as authentic cytoplasmic mRNA. Omission of polyvinylpyrrolidone resulted in release of some αAGP sequences in smaller, more heterogeneous poly(A)-RNA, and leakage of some αAGP sequences was observed from control preparations. Omission of ATP resulted in restriction of mature αAGP mRNA to the nucleus. In contrast to αAGP mRNA, transport of albumin mRNA was decreased 3-4X in turpentine-treated preparations. The largest αAGP intron was not found in RNA transported from treated nuclei in complete medium. The intron-containing fragments remained in the nucleus, largely in poly(A)- RNA of a size consistent with free intron. Some hybridization of intron sequences was observed with cytoplasmic and nuclear membrane-associated poly(A) + RNA preparations which may represent 3′-processing catabolites; leakage of these sequences was considerably greater in the absence of PVP. On the basis of densitometric estimates, a 5-fold increase in the amount of αAGP exon sequences was observed in nuclear RNA, comparing treated with control animals, but transport of αAGP exon sequences was detectable only from treated nuclei, indicating at least a 50-fold increase in abundance of αAGP sequences. This suggests that a selective gating mechanism may be operative at the level of post-transcriptional nucleocytoplasmic transport during induction of αAGP in the acute phase response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

αAGP:

α1-acid glycoprotein

PVP:

polyvinylpyrrolidone

SSC:

standard saline citrate

References

  1. GeorgievO., MousJ. & BirnstielM., 1984. Nucl. Acids Res. 12: 8539–8551.

    Google Scholar 

  2. SchneiderJ., 1959. J. Biol. Chem. 234: 2728–2732.

    Google Scholar 

  3. IshikawaK., KurodaC. & OgataK., 1970. Biochim. Biophys. Acta 213: 505–512.

    Google Scholar 

  4. BagliaF. & MaulG., 1983. Proc. Natl. Acad. Sci. (USA) 80: 2285–2289.

    Google Scholar 

  5. Kindas-MuggeI. & SauermanG., 1985. Eur. J. Biochem. 148: 49–54.

    Google Scholar 

  6. ClawsonG., KoplitzM., Castler-SchechterB. & SmucklerE., 1978. Biochemistry 17: 3747–3752.

    Google Scholar 

  7. ClawsonG. & SmucklerE., 1978. Proc. Natl. Acad. Sci. (USA) 75: 5400–5404.

    Google Scholar 

  8. OteguiC. & PattersonR. J., 1981. Nucl. Acids Res. 9: 4767–4781.

    Google Scholar 

  9. RaskasH., 1971. Nature New Biol. 233: 134–136.

    Google Scholar 

  10. SchummD. & WebbT., 1978. J. Biol. Chem. 253: 8513–8517.

    Google Scholar 

  11. AgutterP., McCaldinB., & McArdleH., 1979. Biochem. J. 182: 811–819.

    Google Scholar 

  12. ClawsonG., JamesJ., WooC., FriendD., MoodyD. & SmucklerE., 1980. Biochemistry 19: 2748–2756.

    Google Scholar 

  13. ClawsonG., MoodyD., FerrellL. & SmucklerE., 1984. Lab. Invest. 51: 682–689.

    Google Scholar 

  14. MurtyC., HornsethR., VerneyE. & SidranskyH., 1983. Lab. Invest. 48: 256–262.

    Google Scholar 

  15. PurrelloF., VigneriR., ClawsonG. & GoldfineI., 1982. Science 216: 1005–1007.

    Google Scholar 

  16. BaumannH., FirestoneG., BurgessT., GrossK., YamamotoK. & HeldW., 1983. J. Biol. Chem. 258: 563–570.

    Google Scholar 

  17. KojA., 1974. In A.Allison (ed.), Structure and function of plasma proteins, vol. 1, Plenum Publishing Co., London. pp 73–131.

    Google Scholar 

  18. RiccaG., HamiltonR., McLeanJ., ConnA., KalinyakJ. & TaylorJ., 1981. J. Biol. Chem. 256: 10362–10368.

    Google Scholar 

  19. BlobelG. & PotterV., 1966. Science 154: 1662–1665.

    Google Scholar 

  20. ChauveauJ., MouleY. & RouillerC., 1956. Exp. Cell Res. 11: 317–321.

    Google Scholar 

  21. JacobsH. & BirnieG., 1982. Eur. J. Biochem. 121: 597–607.

    Google Scholar 

  22. BlackburnP., 1979. J. Biol. Chem. 254: 12484–12487.

    Google Scholar 

  23. BergerS. & BirkermeierC., 1979. Biochemistry 18: 5143–5149.

    Google Scholar 

  24. KrainerA., ManiatisT., RuskinB. & GreenM., 1984. Cell 36: 993–1005.

    Google Scholar 

  25. ClawsonG., ButtonJ., WooC. & SmucklerE., 1985. Molec. Biol. Rpts. 10: 105–107.

    Google Scholar 

  26. ChirgwinJ., PrzybylaA., MacDonaldR. & RutterW., 1975. Biochemistry 18: 5294–5299.

    Google Scholar 

  27. WhiteB. & BancroftF., 1982. J. Biol. Chem. 257: 8569–8572.

    Google Scholar 

  28. GlisinV., CrkvenjakovR. & ByusC., 1974. Biochemistry 13: 2633–2637.

    Google Scholar 

  29. AvivH. & LederP., 1972. Proc. Natl. Acad. Sci. (USA) 69: 1408–1412.

    Google Scholar 

  30. ManiatisT., FritschE. & SambrookJ., 1983. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor Press, New York.

    Google Scholar 

  31. ThomasP., 1980. Proc. Natl. Acad. Sci. (USA) 77: 5201–5205.

    Google Scholar 

  32. LaemmliU., 1970. Nature (London) 227: 680–685.

    Google Scholar 

  33. RiccaG. & TaylorJ., 1981. J. Biol. Chem. 256: 11199–11202.

    Google Scholar 

  34. SargentT., YangM. & BonnerJ., 1981. Proc. Natl. Acad. Sci. (USA) 78: 243–246.

    Google Scholar 

  35. Liao, Y., Taylor, J., Vannice, J., Clawson, G. & Smuckler, E., 1985. Mol. Cell. Biol. (in press).

  36. VanniceJ., RingoldG., McLeanJ. & TaylorJ., 1983. DNA 2: 205–212.

    Google Scholar 

  37. AndersonK., MartinA. & HeathE., 1984. Arch. Biochem. Biophys. 233: 624–635.

    Google Scholar 

  38. RosenthalR. & RaskasH., 1985. Mol. Cell. Biol. 5: 1084–1092.

    Google Scholar 

  39. AndersonN., 1953. Science 117: 517–519.

    Google Scholar 

  40. MacGregorH., 1962. Exp. Cell Res. 26: 520–525.

    Google Scholar 

  41. MerriamR. & HillR., 1976. J. Cell Biol. 69: 659–668.

    Google Scholar 

  42. HerlanG., GieseG. & WunderlichF., 1980. Biochemistry 19: 3960–3966.

    Google Scholar 

  43. PrincenJ., NieuwenhuizenW., Mol-BackG. & YapS., 1981. Biochem. Biophys. Res. Commun. 102: 717–723.

    Google Scholar 

  44. PattersonR., FetherstonJ., DenomeR. & WernerE., 1985. In: E.Smuckler and G.Glawson (ed.), Nuclear envelope structure and RNA maturation, UCLA symposia of molecular and cellular biology, vol. 26. Alan R. Liss, New York (in press).

    Google Scholar 

  45. ColecloughC. & WoodD., 1984. Mol. Cell Biol. 4: 2017–2022.

    Google Scholar 

  46. HatzoglouM., SekerisC. & HansonR., 1985. Proc. Natl. Acad. Sci. (USA) 82: 4346–4350.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clawson, G.A., Button, J., Woo, C.H. et al. In vitro release of α1-acid glycoprotein RNA sequences shows fidelity with the acute phase response in vivo . Mol Biol Rep 11, 163–172 (1986). https://doi.org/10.1007/BF00419737

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00419737

Keywords

Navigation