Skip to main content
Log in

Anaerobic digestion of palm oil mill effluent and condensation water waste: an overall kinetic model for methane production and substrate utilization

  • Originals
  • Published:
Bioprocess Engineering Aims and scope Submit manuscript

Abstract

The process of anaerobic digestion is viewed as a series of reactions which can be described kinetically both in terms of substrate utilization and methane production. It is considered that the rate limiting factor in the digestion of complex wastewaters is hydrolysis and this cannot be adequately described using a Monod equation. In contrast readily assimilable wastewaters conform well to this approach. A generalized equation has thus been derived, based on both the Monod and Contois equations, which serves extreme cases. The model was verified experimentally using continuous feed anaerobic digesters treating palm oil mill effluent (POME) and condensation water from a thermal concentration process. POME represents a complex substrate comprising of unhydrolyzed materials whereas the condensation water is predominantly short chain volatile fatty acids. Substrate removal and methane production in both cases could be predicted accurately using the generalized equation presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A :

(=KskY/Kh) Kinetic parameter

B :

Specific methane yield, 1 of CH4/g of substrate added B0 Maximum specific methane yield, 1 of CH4/g of substrate added at infinity Θ

C :

Empirical constant in Contois equation

F :

Volumetric substrate removal rate, g/l day

k :

Hydrolysed substrate transport rate coefficient, 1/days

K :

(=YC) Kinetic parameter in Chen-Hashimoto equation

K h :

Substrate hydrolysis rate coefficient, 1/days

K s :

Half-saturation constant for hydrolysed substrate, g/l

M v :

Volumetric methane production rate, 1 of CH4/l day

MS :

Mineral solids, g/l

MSS :

Mineral suspended soilds, g/l

POME :

Palm oil mill effluent

R :

(=Sr/ST0) Refractory coefficient

S h :

Concentration of hydrolysed substrate, g/l

S u :

Intracellular concentration of hydrolysed substrate, g/l

S 0 :

Input biodegradable substrate concentration, g/l

S :

Biodegradable substrate concentration in the effluent or in the digester, g/l

S r :

Refractory feed substrate concentration, g/l

S T0 :

(=S0+Sr) Total feed substrate concentration, g/l

S T :

(S+Sr) Total substrate concentration in the effluent, g/l

TS :

Total solids, g/l

TSS :

Total suspended solids, g/l

VFA :

Total volatile fatty acids, g/l

VS :

Volatile solids, g/l

VSS :

Volatile suspended solids, g/l

X :

Biomass concentration, g/l

Y :

Biomass yield coefficient, biomass/substrate mass

Θ :

Hydraulic retention time, days.

μ:

Specific growth rate of microorganisms, l/days

μ m :

Maximum specific growth rate of microorganisms, l/days

References

  1. Lawrence, A. W.; McCarthy, P.L.: Kinetics of methane fermentation in anaerobic waste treatment. Technical Report No 75, Department of Civil Engineering, Stanford University, Stanford, CA (1967)

    Google Scholar 

  2. Morris, G. R.: Anaerobic fermentation of animal wastes: kinetic and empirical evaluation. M.S. Thesis, Cornell University, Ithaca, NY (1976)

    Google Scholar 

  3. Ghosh, S.; Klass, D. L.: Two-phase anaerobic digestion. Process Biochem. 13 (1978) 15–24

    Google Scholar 

  4. Kleinstreuer, C.; Poweigha, T.: Dynamic simulator for anaerobic digestion processes. Biotechnol. Bioeng. 24 (1982) 1941–1951

    Google Scholar 

  5. Lee, D. D.; Donaldson, T. L.: Anaerobic digestion of cellulosic wastes. Biotechnol. Bioeng. Symp. 14 (1984) 503–505

    Google Scholar 

  6. Pavlostathis, S. G.; Gossett, J. M.: A kinetic model for anaerobic digestion of biological sludge. Biotechnol. Bioeng. 28 (1986) 1519–1530

    Google Scholar 

  7. Pavlostathis, S. G.; Miller, T. L.; Wolin, M. G.: Fermentation of insoluble cellulose by continuous cultures of Riminococcus albus. Appl. Environ. Microbiol. 54 (1988) 2655–2659

    Google Scholar 

  8. Grady, C. P. L. Jr.; Harlow, L. J.; Riesing, R. R.: Effects of growth rate and influent substrate concentration on effluent quality from chemostat containing bacteria in pure and mixed culture. Biotechnol. Bioeng. 24 (1972) 391–410

    Google Scholar 

  9. Pfeffer, J. T.: Temperature effects on anaerobic fermentation of domestic refuse. Biotechnol. Bioeng. 16 (1974) 771–787

    Google Scholar 

  10. Chen, Y. R.; Hashimoto, A. G.: Substrate utilization kinetic model for biological treatment processes. Biotechnol. Bioeng. 22 (1980) 2081–95

    Google Scholar 

  11. Monod, J.: The growth of bacterial cultures. Ann. Rev. Microbiol. 3 (1949) 371–376

    Google Scholar 

  12. Hashimoto, A. G.: Methane from cattle waste: effects of temperature, hydraulic retention time, and influent substrate concentration on kinetic parameter (K). Biotechnol. Bioeng. 24 (1982) 2039–2052

    Google Scholar 

  13. Varel, V. H.; Isaacson, H. R.; Bryant, M. P.: Thermophilic methane production from cattle waste. Appl. Environ. Microbiol. 33 (1977) 298–307

    Google Scholar 

  14. Lequerica, J. L.; Valles, S.; Flors, A.: Kinetics of rice straw methane fermentation. Appl. Microbiol. Biotechnol. 19 (1984) 70–74

    Google Scholar 

  15. Webb, A. R.; Hawkes, F. R.: The anaerobic digestion of poultry manure: variation of gas yield with influent concentration and ammonium-nitrogen levels. Agric. Wastes 14 (1985) 135–156

    Google Scholar 

  16. Pillai, K. R.; Unni, B. G.; Barthakur, A.; Singh, H. D.; Baruah, J. N.: Production of biogas from water hyacinth. In Water Hyacinth, p. 715–726, Thyagarajan, G. Ed.; UNEP Proceedings Series 7; United Nations Environmental Programmes: Nairobi, Kenya (1984)

    Google Scholar 

  17. Contois, D. E.: Kinetics of bacterial growth: Relationship between population density and specific growth rate of continuous cultures. J. Gen. Microbiol. 51 (1959) 808–814

    Google Scholar 

  18. Fujimoto, Y.: Kinetics of microbial growth and substrate consumption. J. Theor. Biol. 5 (1963) 171–191

    Google Scholar 

  19. Chen, Y. R.; Hashimoto, A. G.: Kinetics of methane fermentation. Biotechnol. Bioeng. Symp. 8 (1978) 269–282

    Google Scholar 

  20. Miura, Y.; Okazaki, M.; Murakawa, S. I.; Hamada, S. I.; Ohno, K.: Assimilation of liquid hydrocarbon by microorganisms. II. Growth kinetics. Biotechnol. Bioeng. 19 (1977) 715–726

    Google Scholar 

  21. Goma, G.; Ribot, D.: Hydrocarbon fermentation: kinetics of microbial cell growth. Biotechnol. Bioeng. 20 (1978) 1723–1734

    Google Scholar 

  22. Herbert, D.: Continuous culture of microorganisms: some theoretical aspects. p. 381–393. In Recent Progress in Microbiology; Symposia held at the Seventh International Congress for Microbiology; Tunevell, G., Ed., Almquist and Wiksell: Stock-holm, Sweden (1958)

    Google Scholar 

  23. Pfeffer, J. T.: Increased loadings on digesters with recycle of digested solids. J. Water Pollut. Control Fed. 40 (1968) 1920–1933

    Google Scholar 

  24. Chan, D. B.; Pearson, E. A.: Comprehensive studies of solid waste management-hydrolysis rate of cellulose in anaerobic fermentation. SERL, Report No. 103; University of California: Berkeley, CA (1970)

    Google Scholar 

  25. Van Velsen, A. F. M.; Lettinga, G.: Effect of feed composition on digester performance. p. 113–137 In Anaerobic digestion; Stafford, D. A.; Weatley, B. I.; Hughes, D. E.: Eds.; Applied Science Publishers Ltd.; London, England (1980)

    Google Scholar 

  26. Edewor, J. O.: A comparison of treatment methods for palm oil mill effluent (POME) wastes. J. Chem. Technol. Biotechnol. 36 (1986) 212–218

    Google Scholar 

  27. Ng, W. J.; Chin, K. K.; Wong, K. K.: Energy yields from anaerobic digestion of palm oil mill effluent. Biolog. Wastes 19 (1987) 257–266

    Google Scholar 

  28. Borja, R.; Banks, C. J.: Thermophilic semi-continuous anaerobic treatment of palm oil mill effluent. Biotechnol. Letters 15 (1993) 761–766

    Google Scholar 

  29. Ma, A. N.; Ong, A. S. H.: Treatment of palm oil steriliser condensate by an anaerobic process. Biolog. Wastes 23 (1988) 85–97

    Google Scholar 

  30. Davis, J. B.; Reilly, P. J. A.: Palm oil mill effluent — a summary of treatment methods. Oleagineaux 35 (1980) 323–330

    Google Scholar 

  31. American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 16th edn., Washington, D. C. (1985)

  32. Borja, R.; Martin, A.; Alonso, V.: Influence of the microorganism support on the kinetics of anaerobic fermentation of condensation water from thermally concentrated olive mill wastewater. Biodegradation 3 (1992) 93–103

    Google Scholar 

  33. McCarthy, P. L.: Anaerobic process, In Birmingham Short Course on Design Aspects of Biological Treatment, Int'l Assoc. of Water Pollution Research, Birmingham, England (1974)

    Google Scholar 

  34. Valkó, P.; Vajda, S.: Advanced Scientific Computing in Basic with applications in Chemistry, Biology and Pharmacology. Elsevier, Amsterdam (1989)

    Google Scholar 

  35. Barthakur, A.; Bora, M.; Singh, H. D.: Kinetic model for substrate utilization in the anaerobic digestion of organic feeds. Biotechnol. Prog. 7 (1991) 369–376

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

The authors wish to express their gratitude to the “Departamento de Postgrado y Especialización del CSIC” and to the “Consejería de Educación y Ciencia de la Junta de Andalucia” for their financial support of this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borja, R., Banks, C.J., Martín, A. et al. Anaerobic digestion of palm oil mill effluent and condensation water waste: an overall kinetic model for methane production and substrate utilization. Bioprocess Engineering 13, 87–95 (1995). https://doi.org/10.1007/BF00420434

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420434

Keywords

Navigation