Skip to main content
Log in

Basic features of the time finite element approach for dynamics

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

Very general weak forms may be developed for dynamic systems, the most general being analogous to a Hu-Washizu three-field formulation, thus paralleling well-established weak methods of solid mechanics. In this work two different formulations are developed: a pure displacement formulation and a two-field mixed formulation. With the objective of developing a thorough understanding of the peculiar features of finite elements in time, the relevant methodologies associated with this approach for dynamics are extensively discussed. After having laid the theoretical bases, the finite element approximation and the linearization of the resulting forms are developed, together with a method for the treatment of holonomic and nonholonomic constraints, thus widening the horizons of applicability over the vast world of multibody system dynamics. With the purpose of enlightening on the peculiar numerical behavior of the different approaches, simple but meaningful examples are illustrated. To this aim, significant parallels with elastostatics are emphasized.

Sommario

Due differenti formulazioni agli elementi finiti nel tempo sono presentate in questo lavoro quali casi particolari di una formulazione generale a tre campi: la prima è una formulazione agli spostamenti, mentre la seconda è una formulazione mista dove i campi indipendenti sono costituiti da spostamenti e momenti cinetici. Dopo aver sviluppato la linearizzazione e l'approssimazione agli elementi finiti delle forme, viene discussa una tecnica per il trattamento di vincoli di olonomia ed anolonomia. Le principali caratteristiche numeriche dei due metodi vengono infine evidenziate facendo anche ricorso ad esempli semplici ma significativi.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. FriedI., ‘Finite element analysis of time dependent phenomena’, AIAA Jl, 7 (1969) 1170–1173.

    MATH  ADS  Google Scholar 

  2. ArgyrisJ. H. and ScharpfD. W., ‘Finite elements in time and space’, Aeronaut. J. Roy. Aeronaut. Soc., 73 (1969) 1041–1044.

    Google Scholar 

  3. BaileyC. D., ‘Application of Hamilton's law of varying action’, AIAA Jl, 13 (9) (1975) 1154–1157.

    MATH  ADS  Google Scholar 

  4. SmithC. V. and SmithD. R., ‘Comment on “Application of Hamilton's law of varying action”’, AIAA Jl, 15 (2) (1977) 284–286.

    ADS  Google Scholar 

  5. BaileyC. D., ‘Reply by Author to C. V. Smith Jr and D. R. Smith’, AIAA Jl, 15 (2) (1977) 286–287.

    ADS  Google Scholar 

  6. SimkinsT. E., ‘Unconstrained variational statements for initial and boundary-value problems’, AIAA Jl, 16 (6) (1978) 559–563.

    MATH  ADS  Google Scholar 

  7. SmithC. V., ‘Comment on “Unconstrained variational statements for initial and boundary-value problems”’, AIAA Jl, 17 (1) (1979) 126–127.

    ADS  Google Scholar 

  8. SimkinsT. E., ‘Reply by Author to C. V. Smith’, AIAA Jl, 17 (1) (1979) 127–128.

    ADS  Google Scholar 

  9. BaileyC. D., ‘Hamilton's law and the stability of nonconservative continuous systems’, AIAA Jl, 18 (3) (1980) 347–349.

    ADS  Google Scholar 

  10. SmithC. V., ‘Comment on “Hamilton's law and the stability of nonconservative continuous systems”’, AIAA Jl, 19 (3) (1981) 415.

    ADS  Google Scholar 

  11. BaileyC. D., ‘Reply by Author to C. V. Smith Jr, AIAA Jl, 19 (3) (1981) 416.

    ADS  Google Scholar 

  12. BorriM., GhiringhelliG. L., LanzM., MantegazzaP. and MerliniT., ‘Dynamic response of mechanical systems by a weak Hamiltonian formulation’, Comput. Struct., 20 (1985) 495–508.

    Article  MATH  Google Scholar 

  13. PetersD. A. and IzadpanahA., ‘hp-Version finite elements for the space time domain’, Comput. Mech., 3 (1988) 73–88.

    Article  MATH  Google Scholar 

  14. Quarteroni, A., ‘Some remarks on finite elements for second order initial value problems’, Private communication, 1990.

  15. Smith, D. R. and Smith, C. V., ‘When is Hamilton's principle an extremum principle?’, AIAA Jl, 0 (1974) 1573–1576.

    Google Scholar 

  16. BaileyC. D., ‘Hamilton, Ritz, and elastodynamics’, J. Appl. Mech., 43 (1976) 684–688.

    Google Scholar 

  17. SimkinsT. E., ‘Finite elements for initial value problems in dynamics’, AIAA Jl, 19 (10) (1981) 1357–1362.

    MATH  ADS  Google Scholar 

  18. BaruchM. and RiffR., ‘Hamilton's principle, Hamilton's law-6n correct formulations’, AIAA Jl, 20 (5) (1982) 687–691.

    MATH  ADS  Google Scholar 

  19. RiffR. and BaruchM., ‘Stability of time finite elements’, AIAA JI, 22(8) (1984) 1171–1173.

    Article  MATH  MathSciNet  Google Scholar 

  20. Borri, M. and Mantegazza, P., ‘Finite time element approximation of dynamics of non-holonomic systems’, in AMSE Congress, Williamsburg, Virginia, August 1986.

  21. Borri, M., Mello, F., Iura, M. and Atluri, N., ‘Primal and mixed forms of Hamilton's principle for constrained rigid and flexible dynamical systems: Numerical studies’, in Non-Linear Vibrations, Stability, and Dynamics of Structures and Mechanisms, Donaldson Brown continuing Education Center, Virginia Politechnic Institute and State University, June 1988.

  22. Borri, M. and Atluri, N., ‘Time finite element method for the constrained dynamics of a rigid body’, in ICES-88, Atlanta, Georgia, April 1988.

  23. Mello, F., ‘Weak formulations in analytical dynamics, with applications to multi-rigid-body systems, using time finite elements’, PhD Thesis, Georgia Institute of Technology, Atlanta, Georgia, December 1989.

  24. BorriM., MelloF. and AtluriS. N., ‘Variational approaches for dynamics and time-finite-elements: Numerical studies’, Comput. Mech., 7 (1) (1990) 49–76.

    Article  MATH  Google Scholar 

  25. Iura, M., Borri, M. and Atluri, S. N., ‘Analysis of travelling wave responses of structures’, in ICES-88, Atlanta, Georgia, April 1988.

  26. Hodges, D. H. and Bless, R. R., ‘A weak Hamiltonian finite element method for optimal control problems’, J. Guidance Control Dynam. (1990). To appear.

  27. BorriM., LanzM. and MantegazzaP., ‘Helicopter rotor dynamics by finite element time discretization’, L'Aerotec. Missili Spazio, 60 (1981) 193–200.

    MATH  Google Scholar 

  28. Borri, M., Lanz, M. and Mantegazza, P., ‘A general purpose program for rotor blade dynamics’, in Seventh European Rotorcraft and Powered Lift Aircraft Forum, Deutsche Gesellschaft für Luft und Raumfahrt, Garmish-Partenkirchen, September 1981.

  29. Borri, M., Lanz, M., Mantegazza, P., Orlandi, D. and Russo, A., ‘STAHR: a Program for stability and trim analysis of helicopter rotors’, in Eighth European Rotorcraft Forum, Association Aeronatique et Astronatique de France, Aix-en-Provence, September 1982.

  30. Borri, M. and Mantegazza, P., ‘Some contributions on structural and dynamic modelling of helicopter rotor blades’, L'Aerotec. Missili Spazio, 00 (1985) 143–154.

    Google Scholar 

  31. Izadpanah, A., ‘Calculation of Floquet stability by generalization of Hamilton's law to a bilinear formulation’, in 40th Ann. Nat'l Forum of the American Helicopter Society, Arlington, Texas, 1985.

  32. BorriM., ‘Helicopter rotor dynamics by finite element time approximation’, Comput. Math. Applic., 12A (1) (1986) 149–160.

    Article  MathSciNet  Google Scholar 

  33. WashizuK., Variational Methods in Elasticity and Plasticity, Pergamon Press, Oxford, 1968.

    MATH  Google Scholar 

  34. Hamilton, W. R., ‘On a general method in dynamics’, Trans. Roy. Soc. London (1834) 247–308.

  35. BorriM., LanzM. and MantegazzaP., ‘Comment on “Time finite element discretization of Hamilton's law of varying action”’, AIAA Jl, 23 (9) (1985) 1457–1458.

    Google Scholar 

  36. NeimarkJ. I. and FufaevN. A., Dynamics of Nonholonomic Systems. Vol. 33 of Translations of Mathematical Monographs, American Mathematical Society, Providence, Rhode Island, 1972.

    MATH  Google Scholar 

  37. BorriM. and MantegazzaP., ‘Finite time elements approximation of the dynamics of nonholonomic systems’, Modelling, Simulation Control, 12 (1) (1987) 7–18.

    MathSciNet  Google Scholar 

  38. LanczosC., The Variational Principles of Mechanics (2nd edn), University of Toronto Press, Toronto, 1964.

    Google Scholar 

  39. Levi-CivitaT. and AmaldiU., Lezioni di Meccanica Razionale, Zanichelli Editore, Bologna, 1974 (in Italian).

    Google Scholar 

  40. BaumgarteJ., ‘Stabilization of constraints and integrals of motion in dynamical systems’, Comput. Meth. Appl. Mech. Engng, 1 (1972) 1–16.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borri, M., Bottasso, C. & Mantegazza, P. Basic features of the time finite element approach for dynamics. Meccanica 27, 119–130 (1992). https://doi.org/10.1007/BF00420590

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00420590

Key words

Navigation