Skip to main content
Log in

Lipid metabolism during exercise I: Physiological and biochemical characterization of normal healthy male subjects in relation to their physical fitness

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

On the basis of maximal oxygen uptake (\(\dot V\)O2 max) 18 normal, healthy men were divided into two groups of equal size: moderately trained subjects (MTR) each having \(\dot V\)O2 max below 65.0 ml·min−1·kg−1 body weight (54.0±8.3) and well trained subjects (WTR), whose \(\dot V\)O2 max exceeded 65.0 ml·min−1·kg−1 body weight (69.2±4.1). The WTR group had slightly (non significant, n.s.) higher percentage of slow twitch, oxidative (SO) fibers in M. vastus lateralis and higher (n.s.) activities of cytochrome c oxidase (CytOx), succinate dehydrogenase (SDH), 3-hydroxyacyl-CoA-dehydrogenase (HADH), and citrate synthase (CS), while lactate dehydrogenase (LDH) activity was lower (n.s.). In the MTR group only, the SO-%, and the activities of CytOx, SDH and HADH correlated positively with \(\dot V\)O2 max, and LDH negatively with \(\dot V\)O2 max. These correlations were not significant in the WTR group possibly because of the adaptations produced by training in this group. Multiple regression analysis was used to elucidate the best combination of variables to explain the variance in \(\dot V\)O2 max. The best model consisted of the sum of relative activities of oxidative muscle enzymes (CytOx, SDH, HADH, CS), muscle LDH activity, body fat content (% F) and lean body mass. This model explained 69% of the variance in \(\dot V\)O2 max; and of the individual variables % F was of utmost importance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armitage, P.: Statistical methods in medical research. Oxford-Edinburg: Blackwell 1971

    Google Scholar 

  • åstrand, P.-O., Rodahl, K.: Textbook of work physiology. New York: McGraw-Hill 1970

    Google Scholar 

  • Bass, A., Brdiczka, D., Eyer, P., Hofer, S., Pette, D.: Metabolic differentiation of distinct muscle types at the level of enzymatic organization. Eur. J. Biochem. 10, 198–206 (1969)

    Google Scholar 

  • Bergström, J.: Muscle electrolytes in man determined by neutron activation analysis on needle biopsy specimens. A study of normal subject, kidney patients, and patients with chronic diarrhoea. Scand. J. Clin. Lab. Invest. 14 (Suppl.), 68 (1962)

    Google Scholar 

  • Costill, D. L., Daniels, J., Evans, W., Fink, W., Krahenbuhl, G., Saltin, B.: Skeletal muscle enzymes and fiber composition in male and female track athletes. J. appl. Physiol. 2, 149–155 (1976)

    Google Scholar 

  • Durnin, J., Rahaman, M.: The assessment of the amount of fat in the human body from the measurement of skinfold thicknesses. Brit. J. Nutr. 21, 681–689 (1967)

    Google Scholar 

  • Döbeln, W. L., von: Anthropometric determination of fat free body weight. Acta Med. Scand. 165, 37–41 (1959)

    Google Scholar 

  • Gollnick, P. D., Armstrong, R. B., Saubert IV, C. W., Piehl, K. K., Saltin, B.: Enzyme activity and fiber composition in skeletal muscle of untrained and trained men. J. Appl. Physiol. 33, 312–319 (1972)

    Google Scholar 

  • Gollnick, P. D., Armstrong, R. B., Saltin, B., Saubert IV, C. W., Sembrowich, W. L., Shepherd, R. E.: Effect of training on enzyme activity and fiber composition of human skeletal muscle. J. Appl. Physiol. 34, 107–111 (1973)

    Google Scholar 

  • Havu, M., Rusko, H., Komi, P. V., Vos, J., Vihko, V.: Muscle fiber composition, work performance capacity and training in Finnish skiers. IRCS (73-10) 5-7-7, 1973

  • Holloszy, J. O.: Biochemical adaptations to exercise: Aerobic metabolism. In: Exercise and Sport Science Reviews, Vol. 1 (J. H. Wilmore, ed.). New York-London: Academic Press 1973

    Google Scholar 

  • Hoppeler, H., Lüthi, P., Claassen, H., Weibel, E. R., Howald, H.: The ultrastructure of the normal human skeletal muscle. A morphometric analysis on untrained men, women and well-trained orienteers. Pflügers Arch. 314, 217–232 (1973)

    Google Scholar 

  • Karlsson, J., Frith, K., Sjödin, B., Gollnick, P., Saltin, B.: Distribution of LDH isoenzymes in human skeletal muscle. Scand. J. Clin. Lab. Invest. 33, 307–312 (1974)

    Google Scholar 

  • Karlsson, J., Hulten, B., Piehl, K., Sjödin, B., Thorstensson, A.: Suorituskyvyn riippuvuus lihassÄikeistön tekijöistÄ. Suom. LÄÄk.-L. 35, 299–309 (1975)

    Google Scholar 

  • Kiessling, K.-H., Pilström, L., Karlsson, J., Piehl, K.: Mitochondrial volume in skeletal muscle from young and old, untrained and trained, healthy men and from alcoholics. Clin. Sci. 44, 547–554 (1973)

    Google Scholar 

  • Kiessling, K.-H., Pilström, L., Bylund, A.-Ch., Saltin, B., Piehl, K.: Enzyme activities and morphometry in skeletal muscle of middle-aged men after training. Scand. J. Clin. Lab. Invest. 33, 63–69 (1974)

    Google Scholar 

  • Komi, P. V., Viitasalo, J. H. T., Havu, M., Thorstensson, A., Sjödin, B., Karlsson, J.: Skeletal muscle fibres and muscle enzyme activities in monozygous and dizygous twins of both sexes. Acta Physiol. Scand. 100, 385–392 (1977)

    Google Scholar 

  • Kornberg, A.: Lactic dehydrogenase in muscle. In: Methods in Enzymology, Vol. I (S. P. Colowick, N. O. Kaplan, eds.), pp. 441–443. New York-London: Academic Press 1955

    Google Scholar 

  • Lenz, T. L.: Cell fine structure: An atlas of drawings of whole cell structure. Philadelphia: Saunders 1971

    Google Scholar 

  • Lowry, O. H., Rosenbrough, N. R., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Margaria, R., Aghemo, P., Rovelli, E.: Measurement of muscular power (anaerobic) in man. J. Appl. Physiol. 21, 1661–1664 (1966)

    Google Scholar 

  • Padykula, H. A., Herman, A.: The specifity of the histochemical method of adenosine triphosphatase. J. Histochem. Cytochem. 3, 170–195 (1955)

    Google Scholar 

  • Pennington, R. J.: Biochemistry of dystrophic muscle. Mitochondrial succinate tetrazolium reductase and ATPase. Biochem. J. 80, 649–654 (1961)

    Google Scholar 

  • Srere, P. A.: Citrate synthase. In: Methods in Enzymology, Vol. XIII (J. M. Lowenstein, ed.), pp. 3–9. New York-London: Academic Press 1969

    Google Scholar 

  • Suominen, H., Heikkinen, E., Liesen, H., Michel, D., Hollman, W.: Effect of 8 weeks' endurance training on skeletal muscle metabolism in 55 to 70-year-old sedentary men. Eur. J. Appl. Physiol. 37, 173–180 (1977)

    Google Scholar 

  • Vihko, V., Sarviharju, P. J., Havu, M., HirsimÄki, Y., Salminen, A., Rahkila, P., Arstila, A. U.: Selected skeletal muscle variables and aerobic power in trained and untrained men. J. Sport Med. (Torino) 15, 296–304 (1975)

    Google Scholar 

  • Vihko, V., Penttinen, Paula, Rahkila, P., Arstila, A. U.: The ultrastructure of three human skeletal muscles and its relation to individual's maximal oxygen uptake. “Physical performance and muscle metabolism”, Publications of the University of Kuopio. Medicine 1, 11–12 (1976)

    Google Scholar 

  • Whereat, A. F., Orishimo, M. W., Nelson, J.: The localization of different systems for fatty acids in inner and outer mitochondrial membranes from rabbit heart. J. Biol. Chem. 244, 6498–6506 (1969)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vihko, V., SoimajÄrvi, J., Karvinen, E. et al. Lipid metabolism during exercise I: Physiological and biochemical characterization of normal healthy male subjects in relation to their physical fitness. Europ. J. Appl. Physiol. 39, 209–218 (1978). https://doi.org/10.1007/BF00421348

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00421348

Key words

Navigation