Skip to main content
Log in

Effect of glucose ingestion on energy substrate utilization during prolonged muscular exercise

  • Published:
European Journal of Applied Physiology and Occupational Physiology Aims and scope Submit manuscript

Summary

The distribution of substrates utilized during prolonged exercise was investigated in normal human volunteers with and without ingestion of 100 g exogenous glucose. The energy provided by protein oxidation was derived from urinary nitrogen excretion and the total energy provided by carbohydrates and lipids was calculated from respiratory quotient (RQ) determinations. The contribution of exogenous glucose to the energy supply was determined by an original procedure using “naturally labeled 13C-glucose” as metabolic tracer. Protein oxidation provided between 1 and 2% of the total energy requirement; this amount was not affected by glucose ingestion. In the absence of exogenous glucose ingestion, carbohydrate were progressively replaced by lipids as source of energy. Exogenous glucose contributed markedly to total carbohydrate oxidation and decreased the percentage of energy derived from lipids. In addition, ingestion of exogenous glucose resulted in a significant economy of endogenous carbohydrates and permitted to prolong the duration of exercise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ahlborg, G., Felig, P., Hagenfeldt, L.: Substrate turnover during prolonged exercise in man: splanchnic and leg metabolism of glucose free fatty acids, and amino acids. J. clin. Invest. 53, 1080–1090 (1974)

    Google Scholar 

  • Benade, A. J. S., Jansen, C. R., Rogers, G. G., Wyndham, C. H., Strydom, N. B.: The significance of an increased RQ after sucrose ingestion during prolonged aerobic exercise. Pflügers Arch. 342, 199–206 (1973)

    Google Scholar 

  • Bergström, J., Hermansen, L., Hultman, E., Saltin, B.: Diet, muscle glycogen and physical performance. Acta physiol. scand. 71, 140–150 (1967)

    Google Scholar 

  • Carlson, L. A., Pernow, B.: Studies of blood lipids during exercise. Arterial and venous plasma concentration of unesterified fatty acid. J. Lab. clin. Med. 53, 833–841 (1959)

    Google Scholar 

  • Christensen, E. H., Hansen, O.: ArbeitsfÄhigkeit und ErnÄhrung. Skand. Arch. Physiol. 81, 160–172 (1939)

    Google Scholar 

  • Costill, D. L., Bowers, R., Sparks, K., Turner, C.: Muscle glycogen utilization during prolonged running. J. appl. Physiol. 31, 353–356 (1971)

    Google Scholar 

  • Costill, D. L., Benett, A., Branam, G., Eddy, D.: Glucose ingestion at rest and during prolonged exercise. J. appl. Physiol. 34, 764–769 (1973)

    Google Scholar 

  • Dill, D. B., Edwards, H. T., Talbott, J. H.: Studies in muscular activity. VII. Factors limiting the capacity of work. J. Physiol. 77, 49–54 (1932)

    Google Scholar 

  • Duchesne, J., Mosora, F., Lacroix, M., Lefebvre, P., Luyckx, A., Lopez-Habib, G.: Une application clinique d'une nouvelle méthode biophysique basée sur l'analyse isotopique du CO2 exhalé par l'homme. C.R. Acad. Sci. (Paris) 277D, 2261–2264 (1973)

    Google Scholar 

  • Friedberg, S. J., Harlan, W. R., Jr., Trout, D. L., Estes, E. H., Jr.: The effect of exercise on the concentration and turnover of plasma nonesterified fatty acids. J. clin. Invest. 39, 215–230 (1960)

    Google Scholar 

  • Hoffman, W. S.: A rapid photoelectric method for the determination of glucose in blood and urine. J. biol. Chem. 120, 51–55 (1937)

    Google Scholar 

  • Hultman, E., Bergström, J.: Muscle glycogen synthesis in relation to diet studied in normal subjects. Acta med. scand. 182, 109–117 (1967)

    Google Scholar 

  • Hultman, E., Bergström, J., Roch-Norlund, A. E.: Glycogen storage in human skeletal muscle. In: Muscle metabolism during exercise (B. Pernow, B. Saltin, ed.), pp. 273–288. New-York: Plenum 1971

    Google Scholar 

  • Issekutz, B., Jr., Miller, H. I., Rodahl, K.: Lipid and carbohydrate metabolism during exercise. Fed. Proc. 25, 1415–1420 (1966)

    Google Scholar 

  • Issekutz, B., Jr., Miller, H. I., Paul, P., Rodahl, K.: Aerobic work capacity and plasma FFA turnover. J. appl. Physiol. 20, 293–296 (1965)

    Google Scholar 

  • Keul, J., Doll, E., Kepler, D.: Energy metabolism of human muscle. Basel: Karger 1972

    Google Scholar 

  • Lacroix, M., Mosora, F., Pontus, M., Lefebvre, P., Luyckx, A., Lopez-Habib, G.: Glucose naturally labeled with carbon-13: use for metabolic studies in man. Science 181, 445–446 (1973)

    Google Scholar 

  • Lacroix, M., Mosora, F.: Variations du rapport 13C/12C dans le métabolisme animal. A congress report, in isotope ratios as pollutant source and behaviour indicators. At. En. Ag. Vienna 343–358 (1975)

  • Lusk, G.: The science of nutrition. Philadelphia: Saunders 1928

    Google Scholar 

  • Metropolitan Life Insurance Company: Statistical Bulletin, (tables 2 and 3). 40 (1959)

  • Mosora, F., Lacroix, M., Pontus, M., Duchesne, J.: Effets de la désoxycorticostérone, du glucagon et de l'insuline sur le rapport isotopique 13C/12C du CO2 respiratoire chez le rat. Bull. Acad. roy. Belg. Sci. 58, 565–576 (1972)

    Google Scholar 

  • Mosora, F., Lefebvre, P., Pirnay, F., Lacroix, M., Luyckx, A., Duchesne, J.: Quantitative evaluation of the oxidation of an exogenous glucose load using naturally labeled 13C-glucose. Metabolism 25, 1575–1582 (1976)

    Google Scholar 

  • Paul, P.: FFA metabolism of normal dogs during steady-state exercise at different work loads. J. appl. Physiol. 28, 127–132 (1970)

    Google Scholar 

  • Paul, P.: Effects of long lasting physical exercise and training on lipid metabolism. In: Metabolic adaptation to prolonged physical exercise (H. Howald, J. R. Poortmans, ed.), pp. 156–193. Basel: BirkhÄuser 1975

    Google Scholar 

  • Pirnay, F., Lacroix, M., Mosora, F., Luyckx, A., Lefebvre, P.: Glucose oxidation during prolonged exercise evaluated with naturally labeled 13C-glucose. J. appl. Physiol. (in press)

  • Shreeve, W. W.: Potential uses of 13C-labeled carbohydrates in the study and diagnosis of diabetes mellitus. Proceed 1st Int. Conf. Stable Isotopes, May, 1973, Argonne, III., USAEC Conf. 730525

  • Smith, B., Epstein, S.: Two categories of 13C/12C ratios for higher plants. Plant Physiol. 47, 380–384 (1971)

    Google Scholar 

  • Wahren, J., Felig, P., Ahlborg, G., Jorfeldt, L.: Glucose metabolism during leg exercise in man. J. clin. Invest. 50, 2715–2725 (1971)

    Google Scholar 

  • Wahren, J. P., Felig, P., Hagenfeldt, L., Hendler, R., Ahlborg, G.: Splanchnic and leg metabolism of glucose, free fatty acids and amino acids during prolonged exercise in man. In: Metabolic adaptation to prolonged physical exercise (H. Howald, J. R. Poortmans, ed.), pp. 144–153. Basel: BirkhÄuser 1975

    Google Scholar 

  • Wilkerson, H. L. C.: Diagnosis, oral glucose tolerance tests. In: Diabetes mellitus: Diagnosis and treatment, pp. 31–34. New York: American Diabetes Association 1964

    Google Scholar 

  • Young, D. R., Pelligra, R., Shapira, J., Adachi, R. R., Skrettin-Gland, K.: Glucose oxidation and replacement during prolonged exercise in man. J. appl. Physiol. 23, 734–741 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pirnay, F., Lacroix, M., Mosora, F. et al. Effect of glucose ingestion on energy substrate utilization during prolonged muscular exercise. Europ. J. Appl. Physiol. 36, 247–254 (1977). https://doi.org/10.1007/BF00423050

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00423050

Key words

Navigation