We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Metabolism of o-phthalic acid by different gram-negative and gram-positive soil bacteria

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Different bacteria, isolated from soil by the enrichment method, were able to grow on phthalic acid as carbon source. Protocatechuate was identified as intermediate in phthalate metabolism. All phthalategrown bacteria oxidized phthalate and protocatechuate rapidly without having a lag-period. Benzoic acid, terephthalic acid, protocatechuic acid, salicylic acid, di- and mono-butyl phthalate were also metabolized by some of the organisms, benzoic acid being degraded via catechol and terephthalic acid via protocatechuate as intermediate. All organisms tested cleaved protocatechuate or catechol, respectively, by the “ortho” fission, when grown on phthalate, terephthalate, or benzoate as carbon source. A characterization and tentative identification of the organisms is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albersheim, P., Nevins, D. J., English, P. D., Karr, A.: A method for the analysis of sugars in plant cell wall polysaccharides by gas-liquid chromatography. Carbohyd. Res. 5, 340–345 (1967)

    Google Scholar 

  • Alexander, M., Aleem, M. I. H.: Effect of chemical structure on microbial decomposition of aromatic herbicides. J. Agr. Food Chem. 9, 44–47 (1961)

    Google Scholar 

  • Cain, R. B., Cartwright, N. J.: On the properties of some aromatic ring-opening enzymes of species of the genus Nocardia. Biochim. biophys. Acta (Amst.) 37, 197–213 (1960)

    Google Scholar 

  • Dagley, S.: Catabolism of aromatic compounds by microorganisms. Adv. Microbial Physiol. 6, 1–46 (1971)

    Google Scholar 

  • Dagley, S., Evans, W. C., Ribbons, D. W.: New pathways in the oxidative metabolism of aromatic compounds by microorganisms. Nature (Lond.) 188, 560–566 (1960)

    Google Scholar 

  • Engelhardt, G., Wallnöfer, P. R., Hutzinger, O.: The microbial metabolism of di-n-butyl phthalate and related dialkyl phthalates. Bull. Environ. Contam. Toxicol. 13, 342–347 (1975)

    Google Scholar 

  • Evans, W. C.: Microbial transformation of aromatic compounds. in: Fermentation advances (D. Perlman, ed.), pp. 649–679. London-New York: Academic Press 1969

    Google Scholar 

  • Fiedler, F., Cziharz, B., Interschick, E., Schleifer, K. H., Kandler, O.: Murein types in Arthrobacter, Brevibacterium, Corynebacterium and Microbacterium. In: Publ. Fac. Sci. Univ. J. E. Purkyne, Brno 47, 111–122 (1970)

  • Fiedler, F., Schleifer, K., Kandler, O.: Amino acid sequence of the threonine-containing mureins of coryneform bacteria. J. Bact. 113, 8–17 (1973)

    Google Scholar 

  • Gibson, D. T.: Microbial degradation of aromatic compounds. Science 161, 1093–1097 (1968)

    Google Scholar 

  • Hegeman, G. D.: Synthesis of enzymes of the mandelate pathway in Pseudomonas putida. I. Synthesis of enzymes by the wild type. J. Bact. 91, 1140–1151 (1966)

    Google Scholar 

  • Ichihara, A., Adachi, K., Hosokawa, K., Takeda, Y.: The enzymatic hydroxylation of aromatic carboxylic acids; substrate specificities of anthranilate and benzoate oxidases. J. biol. Chem. 237, 2296–2302 (1962)

    Google Scholar 

  • Mason, H. S.: Mechanism of oxygen metabolism. Advanc. Enzymol. 19, 79–233 (1957)

    Google Scholar 

  • Modarska, H., Modarski, M.: Chemotaxonomic characters and classification of some nocardioform bacteria. J. gen. Microbiol. 71, 77–86 (1972)

    Google Scholar 

  • Peakall, D. D.: Phthalate esters. Occurrence and biological effects. Res. Rev. 54, 1–41 (1975)

    Google Scholar 

  • Raymond, R. L., Jamison, V. W.: Biochemical activities of Nocardia. Advanc. appl. Microbiol. 14, 93–122 (1971)

    Google Scholar 

  • Ribbons, D. W., Evans, W. C.: Oxidative metabolism of phthalic acid by soil pseudomonads. Biochem. J. 76, 310–318 (1960)

    Google Scholar 

  • Rothera, A. C. H.: Note on the sodium nitro-prusside reaction for acetone. J. Physiol. (Lond.) 37, 491–494 (1908)

    Google Scholar 

  • Schleifer, K. H., Kandler, O.: Zur chemischen Zusammensetzung der Zellwand der Streptokokken. I. die Aminosäuresequenz des Mureins von Str. thermophilus und Str. faecalis. Arch. Mikrobiol. 57, 335–365 (1967)

    Google Scholar 

  • Schleifer, K. H., Kandler, O.: Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bact. Rev. 36, 407–477 (1972)

    Google Scholar 

  • Stanier, R. Y.: Simultaneous adaption: A new technique for the study of metabolic pathways. J. Bact. 54, 339–348 (1947)

    Google Scholar 

  • Stanier, R. Y., Palleroni, N. J., Doudoroff, M.: The aerobic pseudomonads: A taxonomic study. J. gen. Microbiol. 43, 159–271 (1966)

    Google Scholar 

  • Stevenson, I. L.: Utilization of aromatic hydrocarbons by Arthrobacter. Canad. J. Microbiol. 13, 205–211 (1967)

    Google Scholar 

  • Whellis, M. L., Palleroni, N. J., Stanier, R. Y.: The metabolism of aromatic acids by Pseudomonas testosteroni and P. acidovorans. Arch. Mikrobiol. 59, 302–314 (1967)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Engelhardt, G., Wallnöfer, P.R., Rast, H.G. et al. Metabolism of o-phthalic acid by different gram-negative and gram-positive soil bacteria. Arch. Microbiol. 109, 109–114 (1976). https://doi.org/10.1007/BF00425121

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00425121

Key words

Navigation