Skip to main content
Log in

A mathematical model for an alloy solidification problem in the presence of an electric field

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A one-dimensional mathematical model for a process of solidification of a binary alloy in the presence of an electric field is studied. A situation in which the thermal properties of each phase are different and the latent heat is non-zero is considered. A quasi-static approximation for the thermal and electric fields is used. Local existence and uniqueness of a classical solution to the resulting free boundary problem are proved for two kinds of boundary conditions. Moreover, under particular hypotheses, the monotonicity of the free boundary and the global existence of the solution is proved.

Sommario

Si studia un modello matematico unidimensionale per un processo di solidificazione di una lega binaria in presenza di un campo elettrico. Si considera una situazione in cui le proprietà termiche di ogni fase sono differenti e il calore latente è non nullo. Si usa una approssimazione quasi-statica per i campi elettrico e termico. Si dimostra l'esistenza locale e l'unicità di una soluzione classica per il problema di frontiera libera risultante con due tipi di condizioni di bordo. Inoltre si dimostra, sotto particolari ipotesi, la monotonia della frontiera libera e l'esistenza di soluzione globale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bermudez, A. and Saguez, C., ‘Mathematical formulation and numerical solution of an alloy solidification problem’, in Free Boundary Problems: Theory and Applications, Vol. I, Research Notes in Maths. 78 (1983), 237–247.

  2. Chalmers, B., Principles of Solidification, Krieger, 1977.

  3. Comparini E., ‘On a class of nonlinear free boundary problems’, Boll. Un. Mat. Ital. Suppl. Fis. Mat. 2 (1983), 187–202.

    Google Scholar 

  4. Crowley A. B. and Ockendon J. R., ‘On the numerical solution of an alloy solidification problem’, Int. J. Heat Mass Transfer 22 (1979), 941–947.

    Google Scholar 

  5. Fasano A., ‘Alcune osservazioni su una classe di problemi a contorno libero per l'equazione del calore’, Matematiche (Catania) 29 (1974), 397–411.

    Google Scholar 

  6. Fasano A. and Primicerio M., ‘General free-boundary problems for the heat equation, I’, J. Math. Anal. Appl. 57 (1977), 694–723.

    Google Scholar 

  7. Fasano A. and Primicerio M., ‘Free boundary problems for nonlinear parabolic equations with nonlinear free boundary conditions’, J. Math. Anal. Appl. 72 (1979), 247–273.

    Google Scholar 

  8. Huebener R. P., ‘Thermoelectricity in metals and alloys’, Solid State Phys. 27 (1972), 63–134.

    Google Scholar 

  9. Jastrzebki L., Lagowski J., Gatos H. C. and Witt A. F., ‘Liquid-phase electroepitaxy: Growth kinetics’, J. Appl. Phys. 49 (12) (1978), 5909–5919.

    Google Scholar 

  10. Lagowski J., Jastrzebki L. and Gatos H. C., ‘Liquid-phase electroepitaxy: Dopant segregation’, J. Appl. Phys. 51 (1) (1980), 364–372.

    Google Scholar 

  11. Okamoto A., Lagowski J. and Gatos H. C., ‘Enhancement of interface stability in the liquid phase electroepitaxy’, J. Appl. Phys. 53 (3) (1982), 1706–1713.

    Google Scholar 

  12. Rubinstein, L. I., ‘The Stefan problem’, Amer. Math. Soc. Transl. Math. Mon. 27 (1971).

  13. Tsubaki T., Boley B. A., ‘One-dimensional solidification of binary mixtures’, Mech. Res. Comm. 42 (2) (1977), 115–122.

    Google Scholar 

  14. Wheeler, A. A., Coriell, S. R., McFadden, G. B. and Hurle, D. T. J., ‘The effect of an electric field on the morphological instability: a basic model’ (to appear).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stampella, M. A mathematical model for an alloy solidification problem in the presence of an electric field. Meccanica 26, 211–219 (1992). https://doi.org/10.1007/BF00430938

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00430938

Key words

Navigation