Skip to main content
Log in

Error-corrective optical neural networks modelled by persistent spectral hole-burning

  • Papers
  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

We show that materials with the ability to form persistent spectral holes under illumination have frequency as an additional optically parallel accessible degree of freedom that may be incorporated into associative memory. This opens new possibilities for increasing the number of interconnections in optical models of neural networks. In our first example, a 144-element autoassociative memory matrix is constructed on two 12-bit vectors and has two dimensions (x and frequency ω). The probe vector at the memory input carries two erroneous bits (out of 12 bits) and is onedimensional (spatial coordinate x); the memory output-with the error bits correctedis one-dimensional in frequency ω. The second example uses memory input that is twodimensional (image in coordinates x, y); the memory matrix is four-dimensional (x, y ω, t), where t (time coordinate) is given by the temporal delay of photochemically accumulated stimulated photon echo signal; memory output is two-dimensional (ω and t) and corrects two bits out of the 12-bit vector. In the third example, quadratic autoassociative memory is coded in three dimensions (coordinates x, y, ω) and materializes 32×32×32=32768 optical interconnections; the probe vector is given as a 32×32 spatial matrix (coordinates x, y); the output is one-dimensional, consists of 32 bits along the frequency axis, and corrects four erroneous bits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. GOROKHOVSKII, R. K. KAARLI and L. A. REBANE, JETP Lett. 29 (1974) 216.

    Google Scholar 

  2. B. M. KHARLAMOV, R. I. PERSONOV and L. A. BYKOVSKAYA, Opt. Commun. 12 (1974) 191.

    Google Scholar 

  3. W. E. MOERNER, editor, Persistent Spectral Hole Burning: Science and Applications (Springer-Verlag, Berlin, Heidelberg, 1988) and refs. therein.

    Google Scholar 

  4. E. D. TRIFONOV, Doklady Akademii Nauk SSSR 147 (1962) 826 (in Russian).

    Google Scholar 

  5. K. K. REBANE, Impurity Spectra of Solids (Plenum Press, New York, 1970).

    Google Scholar 

  6. O. SILD and K. HALLER, editors, Zero-Phonon Lines and Spectral Hole Burning in Spectroscopy and Photochemistry (Springer-Verlag, Berlin, Heidelberg, 1988).

    Google Scholar 

  7. W. E. MOERNER and L. KADOR, Phys. Rev. Lett. 62 (1989) 2535; W. P. AMBROSE and W. E. MOERNER, Nature 349 (1991) 225.

    Google Scholar 

  8. M. ORRIT and J. BERNARD, Phys. Rev. Lett. 65 (1990) 2716; U. WILD, F. GÜTTLER, M. PIROTTA and A. RENN, Chem. Phys. Lett. 69 (1992) 1516.

    Google Scholar 

  9. Technical Digest on Persistent Spectral Hole-Burning: Science and Applications, Conference 26–28 Sept. 1991, Monterey, Calif. (Optical Society of America, Washington D.C., 1991) Vol. 16.

  10. L. A. REBANE, A. A. GOROKHOVSKII and J. V. KIKAS, Appl. Phys. B 29 (1982) 235

    Google Scholar 

  11. K. K. REBANE and L. A. REBANE, W. E. MOERNER, editor, Persistent Spectral Hole Burning: Science and Application (Springer-Verlag, Berlin, Heidelberg, 1988) p. 17.

    Google Scholar 

  12. J. V. KIKAS, O. SILD and K. HALLER, editors, Zero-Phonon Lines and Spectral Hole Burning in Spectroscopy and Photochemistry (Springer-Verlag, Berlin, Heidelberg, 1988) p. 89.

    Google Scholar 

  13. A. K. REBANE, R. K. KAARLI and P. S. SAARI, Pis'ma Zh. Eksp. Teor. Fiz. 38 (1983) 320 (Eng. transl. JETP Lett. 38 (1983) 383); A. K. REBANE, R. K. KAARLI and P. M. SAARI, Opt. Spektrosk. 55 (1983) 405 (Eng. transl. Opt. Spectrosc. USSR 55 (1983) 283); P. M. SAARI, R. K. KAARLI and A. K. REBANE, Kvantovaya Elektron. 12 (1985) 672 (Eng. transl. Sov. J. Quantum Electron 15 (1985) 443); P. SAARI, R. KAARLI and A. REBANE, J. Opt. Soc. Am. B 3 (1986) 527.

    Google Scholar 

  14. A. REBANE, Opt. Commun. 65 (1988) 175.

    Google Scholar 

  15. N. FARHAT, D. PSALTIS, A. PRATA and E. PAEK, Appl. Opt. 24 (1985) 1469.

    Google Scholar 

  16. T. KOHONEN, Self-Organization and Associative Memory (Springer-Verlag, Berlin, Heidelberg, 1987).

    Google Scholar 

  17. J. J. HOPFIELD, Proc. Natl Acad. Sci. USA 79 (1982) 2554.

    Google Scholar 

  18. I. SHARIV and A. A. FRIESEAM, Opt. Lett. 14 (1989) 485.

    Google Scholar 

  19. J. S. JANG, S. W. JUNG, S. Y. LEE and S. Y. SHIN, Opt. Lett. 13 (1988) 248.

    Google Scholar 

  20. A. REBANE and O. OLLIKAINEN, Opt. Commun. 83 (1991) 246.

    Google Scholar 

  21. H. H. CHEN, Y. C. LEE, G. Z. SUN, H. Y. LEE, T. MAXWELL and C. L. GILES, AIP Conf. Proc. 151 (1986) 86.

    Google Scholar 

  22. D. PSALTIS and C. H. PARK, AIP Conf. Proc. 151 (1986) 370.

    Google Scholar 

  23. J. S. JANG, S. Y. SHIN and S. Y. LEE, Opt. Lett. 13 (1988) 693.

    Google Scholar 

  24. O. OLLIKAINEN, to be published in Appl. Opt.

  25. A. RENN, A. J. MEIXNER and U. P. WILD, J. Chem. Phys. 92 (1990) 2748.

    Google Scholar 

  26. A. REBANE, S. BERNET, A. RENN and U. P. WILD, Opt. Commun. 86 (1991) 7; S. BERNET, B. KOHLER, A. REBANE, A. RENN and U. P. WILD, J. Luminescence 53 (1992) 215; S. BERNET, B. KOHLER, A. REBANE, A. RENN and U. P. WILD, J. Opt. Soc. Am. B 9 (1992) 987.

    Google Scholar 

  27. A. A. GOROKHOVSKII, J. V. KIKAS and R. V. JAANISO, USSR Patent 1312456 (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ollikainen, O., Rebane, A. & Rebane, K.K. Error-corrective optical neural networks modelled by persistent spectral hole-burning. Opt Quant Electron 25, S569–S585 (1993). https://doi.org/10.1007/BF00444331

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00444331

Keywords

Navigation