Skip to main content
Log in

Feinstrukturanalyse der komplexen Geißeln von Rhizobium lupini H 13-3

Fine structure analysis of the complex flagella of Rhizobium lupini H 13-3

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Cells of Rhizobium lupini H 13-3 possess 5 to 10 peritrichously inserted complex flagella, which were analyzed by high resolution electron microscopy and by optical diffraction. The flagellar filament has a diameter of 160 Å; it consists of a cylindrical core (diameter approximately 110 Å) surrounded by three close-fitting bands of a helical sheath. The helical bands are 49 Å wide, separated by axial intervals, 49 Å wide, and run at an angle of 31°. Complex filaments consist of a 43 000-dalton protein representing the core and the helical sheath. These originate from the proximal hook, which has a diameter of 150 Å and a length of 600 to 800 Å. The diffraction analysis of the hook showed a helical arrangement of globular subunits forming a surface of 5 parallel “small-scale” helices (pitch-angles 29° and 33°, respectively), each carrying almost 11 subunits per period. The complex flagella of R. lupini H 13-3 and Pseudomonas rhodos [Schmitt, et al.: J. Bact. 117, 844–857 (1974)] represent a novel type of bacterial flagella. There is agreement in their fine structures, in the intimate connection of the helical sheath and the core, and in the fragility of their filaments. Thery are clearly distinguished by the molecular weights of their flagellin monomers (43 000 and 55 000, respectively). Cells of R. lupini H 13-3 show fast, vibrating, translational motions. Possible mechanisms of complex flagellar motion are discussed.

Zusammenfassung

Zellen von Rhizobium lupini H 13-3 besitzen 5–10 peritrich inserierte komplexe Geißeln, deren Feinstruktur durch Hochauflösungs-Elektronenmikroskopie und lichtoptische Diffraktion analysiert wurde. Das Geißelfilament hat einen Durchmesser von 160 Å und besteht aus einem zylindrischen Kern (Durchmesser ca. 110 Å), der fest von drei Bändern einer helikalen Scheide umgeben ist. Die Scheidenbänder sind 49 Å breit, durch 49 Å-Intervalle voneinander getrennt und haben eine Steigung von 31°. Die komplexen Geißelfilamente bestehen aus einem 43 000-Dalton-Protein, das den Kern und die helikale Scheide aufbaut. Beide gehen übergangslos aus dem proximalen Geißelhaken hervor, der einen Durchmesser von 150 Å und eine Länge von 600 bis 800 Å hat. Die Diffraktionsanalyse des Geißelhakens zeigte eine helikale Grundanordnung von globulären Untereinheiten, die ein Oberflächengitter von 5 parallelen Schrauben (Steigung 29° bzw. 33°) bilden, von denen jede fast 11 Untereinheiten pro Helixungang trägt. Die komplexen Geißeln von R. lupini H 13-3 und Pseudomonas rhodos [Schmitt et al.: J. Bact. 117, 844–857 (1974)] sind ein neuer Typ von Bakteriengeißeln. Sie zeigen deutliche Übereinstimmung in der Feinstruktur, der festen Verbindung von helikaler Scheide und Geißelhaken sowie in der Fragilität ihrer Filamente; sie unterscheiden sich deutlich im Molekulargewicht der Flagellinmonomeren (43 000 bzw. 55 000). Zellen von R. lupini H 13-3 führen schnelle, vibrierende Translationsbewegungen aus. Mögliche Mechanismen der Bewegung komplexer Geißeln werden diskutiert.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Acker, G.: Feinstruktur und Biochemie alternder Zellen von Pseudomonas rhodos. Dissertation, Universität Erlangen 1973

  • Berg, H. C.: Dynamic properties of bacterial flagellar motors. Nature (Lond.) 249, 77–79 (1974)

    Google Scholar 

  • Berg, H. C., Anderson, R. A.: Bacteria swim by rotating their flagellar filaments. Nature (Lond.) 245, 380–382 (1973)

    Google Scholar 

  • Bode, W., Engel, J., Winkelmaier, D.: A model of bacterial flagella based on small-angle X-ray scattering and hydrodynamic data which indicate an elongated shape of the flagellin protomer. Europ. J. Biochem. 26, 313–327 (1972)

    Google Scholar 

  • Calladine, C. R.: Bacteria can swim without rotating flagellar filaments. Nature (Lond.) 249, 385 (1974)

    Google Scholar 

  • Champness, J. N.: X-ray and optical diffraction studies of bacterial flagella. J. molec. Biol. 56, 295–310 (1971)

    Google Scholar 

  • Dunker, A. K., Rueckert, R. R.: Observations on molecular weight determinations on polyacrylamide gel. J. biol. Chem. 244, 5074–5080 (1969)

    Google Scholar 

  • Enomoto, M.: Genetic studies of paralyzed mutants in Salmonella. I. Genetic fine structure of the mot loci in Salmonella typhimurium. Genetics 54, 715–726 (1966)

    Google Scholar 

  • Gabor, M.: Transformation of streptomycin markers in rough strains of Rhizobium lupini. II. The relation between the determinant of streptomycin dependence and those for streptomycin resistance and sensitiveness. Genetics 52, 905–913 (1965)

    Google Scholar 

  • Kapitany, R. A., Zebrowski, E. J.: A high resolution PAS stain for polyacrylamide gel electrophoresis. Analyt. Biochem. 56, 361–369 (1973)

    Google Scholar 

  • Klug, A.: The design of self-assembling systems of equal units. Symp. Int. Soc. Cell Biol. 6, 1–18 (1967)

    Google Scholar 

  • Klug, A., Crick, F. H. C., Wyckoff, H. W.: Diffraction by helical structures. Acta crystallogr. 11, 199–213 (1958)

    Google Scholar 

  • Klug, A., De Rosier, D. J.: Optical filtering of electron micrographs: reconstruction of one-sided images. Nature (Lond.) 212, 29–32 (1966)

    Google Scholar 

  • Labaw, L. W., Moseley, V. M.: Periodic structure in the flagella and cell walls of a bacterium. Biochim. biophys. Acta (Amst.) 15, 325–331 (1954)

    Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., Randall, R. J.: Protein measurement with the Folin phenol reagent. J. biol. Chem. 193, 265–275 (1951)

    Google Scholar 

  • Lowy, J., Spencer, M.: Structure and function of bacterial flagella. Symp. Soc. exp. Biol. 22, 215–236 (1968)

    Google Scholar 

  • Marx, R., Heumann, W.: Über Geißelfeinstrukturen und Fimbrien bei zwei Pseudomonas-Stämmen. Arch. Mikrobiol. 43, 245–254 (1962)

    Google Scholar 

  • Moody, M. F.: Structure of the sheath of bacteriophage T4. I. Structure of the contracted sheath and polysheath. J. molec. Biol. 25, 167–200 (1967)

    Google Scholar 

  • O'Brien, E. J., Bennett, P. M.: Structure of straight flagella from a mutant Salmonella. J. molec. Biol. 70, 133–152 (1972)

    Google Scholar 

  • Schmitt, R., Mayer, F., Lotz, W.: Structure of the complex flagella of Rhizobium lupini H 13-3. Proc. 1st Intersect. Congr. IAMS, Tokio (im Druck 1974a)

  • Schmitt, R., Raska, I., Mayer, F.: Plain and complex flagella of Pseudomonas rhodos: Analysis of fine structure and composition. J. Bact. 117, 844–857 (1974b)

    Google Scholar 

  • Schmitt, R., Raska, I., Mayer, F.: Feinstruktur und Biochemie komplexer Geißeln und ihrer Geißelhaken bei Pseudomonas rhodos. Hoppe-Seylers Z. physiol. Chem. 353, 1564–1565 (1972)

    Google Scholar 

  • Shapiro, A. L., Vinuela, E., Maizel, J. V., Jr.: Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem. biophys. Res. Commun. 28, 815–820 (1967)

    Google Scholar 

  • Silverman, M., Simon, M.: Flagellar rotation and the mechanism of bacterial motility. Nature (Lond.) 249, 73–74 (1974)

    Google Scholar 

  • Smith, R. W., Koffler, H.: Bacterial flagella. Advanc. Microbiol. Physiol. 6, 219–339 (1971)

    Google Scholar 

  • Traut, R. R.: Acrylamide gel electrophoresis of radioactive ribosomal protein. J. molec. Biol. 21, 571–576 (1966)

    Google Scholar 

  • Valentine, R. C., Shapiro, B. M., Stadtman, E. R.: Regulation of glutamine synthetase. XII. Electron microscopy of the enzyme from Escherichia coli. Biochemistry 7, 2143–2152 (1968)

    Google Scholar 

  • Yanagida, M., Boy de la Tour, E., Alff-Steinberger, C., Kellenberger, E.: Studies on the morphopoiesis of the head of bacteriophage T-even. J. molec. Biol. 50, 35–38 (1970)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Herrn Professor Wolfram Heumann zum 60. Geburtstag gewidmet.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, R., Bamberger, I., Acker, G. et al. Feinstrukturanalyse der komplexen Geißeln von Rhizobium lupini H 13-3 . Arch. Microbiol. 100, 145–162 (1974). https://doi.org/10.1007/BF00446314

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00446314

Key words

Navigation