Skip to main content
Log in

A principle of natural self-organization

Part A: Emergence of the hypercycle

  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

This paper is the first part of a trilogy, which comprises a detailed study of a special type of functional organization and demonstrates its relevance with respect to the origin and evolution of life. Self-replicative macromolecules, such as RNA or DNA in a suitable environment exhibit a behavior, which we may call Darwinian and which can be formally represented by the concept of the quasi-species. A quasi-species is defined as a given distribution of macromolecular species with closely interrelated sequences, dominated by one or several (degenerate) master copies. External constraints enforce the selection of the best adapted distribution, commonly referred to as the wild-type. Most important for Darwinian behavior are the criteria for internal stability of the quasi-species. If these criteria are violated, the information stored in the nucleotide sequence of the master copy will disintegrate irreversibly leading to an error catastrophy. As a consequence, selection and evolution of RNA or DNA molecules is limited with respect to the amount of information that can be stored in a single replicative unit. An analysis of experimental data regarding RNA and DNA replication at various levels of organization reveals, that a sufficient amount of information for the build up of a translation machinery can be gained only via integration of several different replicative units (or reproductive cycles) through functional linkages. A stable functional integration then will raise the system to a new level of organization and thereby enlarge its information capacity considerably. The hypercycle appears to be such a form of organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

ReferencesReferences

  1. Wright, S.: Genetics 16, 97 (1931)

    Google Scholar 

  2. Woese, C.R.: The Genetic Code. New York: Harper and Row 1967

    Google Scholar 

  3. Crick, F.C.R., et al.: Origins of Life 7, 389 (1976)

    Google Scholar 

  4. Eigen, M.: Naturwissenschaften 58, 465 (1971)

    Google Scholar 

  5. Bethe, H., in: Les Prix Nobel en 1967, p. 135. Stockholm 1969

  6. Krebs, H., in: Nobel Lectures, Physiology or Medicine 1942–1962, p. 395. Amsterdam: Elsevier 1964

    Google Scholar 

  7. Spiegelmann, S.: Quart. Rev. Biophys. 4, 213 (1971); Haruna, I., Spiegelmann, S.: Proc. Nat. Acad. Sci. USA 54, 579 (1975); Mills, D.R., Peterson, R.L., Spiegelmann, S.: ibid. 58, 217 (1967)

    Google Scholar 

  8. Sumper, M., Luce, R.: ibid.

    Google Scholar 

  9. Küppers, B.-O.: Naturwissenschaften (to be published)

  10. Kornberg, A.: DNA Synthesis. San Francisco: W.H. Freeman 1974

    Google Scholar 

  11. RNA-Phages (Zinder, N.D., ed.). Cold Spring Harbor Monograph Series, Cold Spring Harbor Laboratory 1975

  12. Fisher, R.A.: Proc. Roy. Soc. B 141, 510 (1953); Haldane, J.B.S.: Proc. Camb. Phil. Soc. 23, 838 (1927); Wright, S.: Bull. Am. Math. Soc. 48, 233 (1942)

    Google Scholar 

  13. Eigen, M.: Ber. Bunsenges. physik. Chem. 80, 1059 (1976)

    Google Scholar 

  14. Dobzhansky, Th.: Genetics of the Evolutionary Process. New York: Columbia Univ. Press 1970

    Google Scholar 

  15. Darwin, Ch.: Of the Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life. Paleontological Society 1854. The Origin of Species, Chapter 4, London 1872; Everyman's Library, London: Dent and Sons 1967

  16. Darwin, Ch., Wallace, A.R.: On the Tendency of the Species to Form Varieties and on the Perpetuation of the Species by Natural Means of Selection. J. Linn. Soc. (Zoology) 3, 45 (1858)

    Google Scholar 

  17. Eigen, M., Winkler-Oswatitsch, R.: Ludus Vitalis, Mannheimer Forum 73/74, Studienreihe Boehringer, Mannheim 1973

  18. Eigen, M., Winkler-Oswatitsch, R.: Das Spiel. München: Piper 1975

    Google Scholar 

  19. Schrödinger, E.: What is Life? Cambridge Univ. Press 1944

  20. Thompson, C.J., McBride, J.L.: Math. Biosci. 21, 127 (1974)

    Google Scholar 

  21. Jones, B.L., Enns, R.H., Rangnekar, S.S.: Bull. Math. Biol. 38, 15 (1976); Jones, B.L.: ibid. 38, XX (1976)

    Google Scholar 

  22. Küppers, B.-O.: Dissertation, Göttingen 1975

  23. Glansdorff, P., Prigogine, I.: Thermodynamic Theory of Structure, Stability and Fluctuations. New York: Wiley-Interscience 1971

    Google Scholar 

  24. Sabo, D., et al.: to be published

  25. Kimura, M., Ohta, T.: Theoretical Aspects of Population Genetics. Princeton, New Jersey: Princeton Univ. Press 1971

    Google Scholar 

  26. King, J.L., Jukes, T.H.: Science 164, 788 (1969)

    Google Scholar 

  27. Kramer, F.R., et al.: J. Mol. Biol. 89, 719 (1974)

    Google Scholar 

  28. Hoffmann, G.: Lecture at Meeting of the Senkenbergische Naturforscher Gesellschaft, April 1974

  29. Tyson, J.J., in: Some Mathematical Questions in Biology (ed. Levin, S.A.). Providence, Rhode Island: AMS Press 1974

    Google Scholar 

  30. Shannon, C.E., Weaver, W.: The Mathematical Theory of Communication. Urbana: Univ. of Illinois Press 1949

    Google Scholar 

  31. Brillouin, L.: Science and Information Theory. New York: Academic Press 1963

    Google Scholar 

  32. Domingo, E., Flavell, R.A., Weissmann, Ch.: Gene 1, 3 (1976)

    Google Scholar 

  33. Batschelet, E., Domingo, E., Weissmann, Ch.: ibid..

    Google Scholar 

  34. Weissmann, Ch., Feix, G., Slor, H.: Cold Spring Harbor Symp. Quant. Biol. 33, 83 (1968)

    Google Scholar 

  35. Spiegelmann, S.: Lecture at the Symposium: Dynamics and Regulation of Evolving Systems, Schloß Elmau, May 1977

  36. Hall, E.W., Lehmann, I.R.: J. Mol. Biol. 36, 321 (1968)

    Google Scholar 

  37. Battula, N., Loeb, L.A.: J. Biol. Chem. 250, 4405 (1975)

    Google Scholar 

  38. Chang, L.M.S.: ibid.

    Google Scholar 

  39. Loeb, L.A., in: The Enzymes, Vol. X, p. 173 (ed. P.D. Boyer). New York-London: Academic Press 1974

    Google Scholar 

  40. Hopfield, J.J.: Proc. Nat. Acad. Sci. USA 71, 4135 (1974)

    Google Scholar 

  41. Englund, P.T.: J. Biol. Chem. 246, 5684 (1971)

    Google Scholar 

  42. Bessman, M.J., et al.: J. Mol. Biol. 88, 409 (1974)

    Google Scholar 

  43. Jovin, T.M.: Ann. Rev. Biochem. 45, 889 (1976)

    Google Scholar 

  44. Pörschke, D., in: Chemical Relaxation in Molecular Biology, p. 191 (Pecht, I., Rigler, R., eds.). Heidelberg: Springer 1977

    Google Scholar 

  45. Watson, J.D.: The Molecular Biology of the Gene. New York: Benjamin 1970

    Google Scholar 

  46. Ladner, J.E., et al.: Proc. Nat. Acad. Sci. USA 72, 4414 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eigen, M., Schuster, P. A principle of natural self-organization. Naturwissenschaften 64, 541–565 (1977). https://doi.org/10.1007/BF00450633

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00450633

Keywords

Navigation