Skip to main content
Log in

Modelling and simulation of nonpremixed turbulent flames

  • Published:
Meccanica Aims and scope Submit manuscript

Abstract

A computational model for nonpremixed turbulent flames is presented. It is based on the conserved scalar approach and on a convenient specification of the probability density function, which allows the mean density to be recovered in closed (algebraic) form. The k-ε1 model is adopted for turbulence, and the resulting equations for parabolic flows are solved via a block implicit algorithm. The computed results are compared with experimental data and other authors' predictions.

Sommario

Si propone un modello per fiamme turbolente nonpremiscelate. Esso si basa sull'approccio dello scalare conservato e su una conveniente specificazione della funzione densità di probabilità, che permette di ottenere la densità media in forma chiusa (algebrica). Per la turbolenza si adotta il modello k-ε1, ed il sistema di equazioni risultante per flussi parabolici è risolto attraverso un algoritmo implicito a blocchi. I risultati calcolati sono confrontati con dati sperimentali e previsioni di altri autori.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BilgerR. W., ‘Turbulent flows with nonpremixed reactants’. In Turbulent Reacting Flows (eds P. A.Libby and F. A.Williams), Topics in Applied Physics, 44, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  2. RhodesR. P., HarshaP. T. and PetersC. E., ‘Turbulent kinetic energy analyses of hydrogen-air diffusion flames’, Acta Astronautica, 1 (1974) 443.

    Google Scholar 

  3. Kent, J. H. and Bilger, R. W., ‘The prediction of turbulent diffusion flame fields and nitric oxide formation’, 16th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburg, 1977, p. 1643.

  4. JonesW. P., ‘Models for turbulent flows with variable density and combustion’. In Prediction Models for Turbulent Flows (ed. W.Kollman). Hemisphere Publ. Co., Washington, 1980.

    Google Scholar 

  5. Jones, W. P., Private communication, 1989.

  6. LibbyP. A. and WilliamsF. A., ‘Fundamental aspects’. In Turbulent Reacting Flows (eds P. A.Libby and F. A.Williams), Topics in Applied Physics, 44, Springer-Verlag, Berlin, 1980.

    Google Scholar 

  7. JonesW. P. and WhitelawJ. H., ‘Calculation methods for turbulent reacting flows: a review’, Comb. Flame, 48 (1982) 1.

    Google Scholar 

  8. Kent, J. H. and Bilger, R. W., ‘Turbulent diffusion flames’, 14th Symp. (Int.) on Combustion, The Combustion Institute, Pittsburg, 1973, p. 615.

  9. Libby, P. A., Private communication, 1988.

  10. AbramowitzM. and StegunI. A., Handbook of Mathematical Functions, National Bureau of Standards, Washington, 1964.

    Google Scholar 

  11. RodiW., Turbulence Models and their Application to Hydraulics—A State of the Art Review, Int. Ass. Hydraulic Research, Delft, 1980.

    Google Scholar 

  12. PatelV. C., RodiW. and ScheurerG., ‘Turbulence model for nearwall and low Reynolds number flows: a review’, AIAA J., 23 (1985) 1308.

    Google Scholar 

  13. Beck, R. E., ‘Experiments on turbulent diffusion flames’, M.Eng.Sc. Thesis, University of Sydney, 1974.

  14. Libby, P. A., ‘An introduction to turbulence’, Lecture Notes, University of California San Diego, 1987.

  15. Reynolds, W. C., ‘The element-potential method for chemical equilibrium analysis: implementation in the interactive program STANJAN’, Dept. Mech. Eng., Stanford Univ., Jan. 1986.

  16. LiewS. K., BrayK. N. C. and MossJ. B., ‘A stretched laminar flamelet model of turbulent nonpremixed combustion’, Comb. Flame, 56 (1984) 199.

    Google Scholar 

  17. Peters, N., ‘Laminar flamelet concepts in turbulent combustion’, 21 st Symp. (Int.) on Combustion, The Combustion Institute, Pittsburgh, 1986, p. 1231.

  18. Lentini, D., ‘A computational model for nonpremixed turbulent combustion via the stretched laminar flamelet approach’, 46th ATI National Congress, Gaeta, Sept. 1991.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lentini, D. Modelling and simulation of nonpremixed turbulent flames. Meccanica 27, 55–61 (1992). https://doi.org/10.1007/BF00453003

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00453003

Key words

Navigation