Skip to main content
Log in

Recent developments in atomic spectrometry methods for elemental trace determinations

Neue Entwicklungen atomspektrometrischer Methoden für die Elementspurenanalyse

  • Review
  • Published:
Fresenius' Zeitschrift für analytische Chemie Aims and scope Submit manuscript

Zusammenfassung

Für die atomspektrometrischen Methoden wird der Fortschritt im Hinblick auf Nachweisvermögen, analytische Zuverlässigkeit und Kosten diskutiert. Optische Methoden wie die Emissions-, Atomabsorptionsund Fluorescenzspektrometrie, aber auch verwandte Techniken (Optogalvanik und kohärente Vorwärtsstreuung), neue röntgenspektrometrische Methoden und massenspektrometrische Verfahren werden behandelt. Es werden der Stand der Technik, die Entwicklungstendenzen und neue Techniken wie spezielle Probenzuführungsmethoden für die Plasmaspektrometrie, Glimmentladungen, die laserinduzierte Ionisationsspektrometrie, die Röntgenfluorescenzspektrometrie mit Totalreflektion und der Einsatz des induktiv gekoppelten Plasmas und von Glimmentladungen als Ionenquellen für die Massenspektrometrie dargestellt. Das Nachweisvermögen, die Multielementkapazität, die Interferenzen, die Möglichkeiten für Mikro- und Verteilungsanalysen sowie für die Bestimmung der Bindungsform bei den Methoden der Atomspektrometrie werden mit denen anderer Methoden für die Bestimmung der chemischen Elemente verglichen.

Summary

Methods for atomic spectrometry are discussed in view of progress for elemental trace analysis and with special reference to progress in power of detection and in analytical reliability as well as with respect to economic aspects. Optical methods basing on atomic emission, absorption and fluorescence principles as well as related techniques (optogalvanic spectroscopy and coherent forward scattering), X-ray spectrometry and mass spectrometry are treated. The state-of-the-art, trends of development and new techniques such as special sample introduction for plasma spectrometry, glow discharges, laser enhanced ionization spectrometry with a thermionic diode, X-ray spectrometry with total reflection, plasma and glow discharge mass spectrometry are drawn up. Their potential interest from the point of power of detection, multielement capacity, interferences, capabilities for micro- and local analysis and speciation is compared with that of other methods for elemental analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Adams F (1983) Spectrochim Acta 38B:1379–1393

    Google Scholar 

  2. Addink NWH (1971) DC arc analysis. MacMillan, London

    Google Scholar 

  3. Alkemade CThJ, Hermann R (1979) Fundamentals of analytical flame spectroscopy. Hilger, Bristol

    Google Scholar 

  4. Allemand CD, Barnes RM, Wohlers CC (1979) Anal Chem 51:2392–2394

    Google Scholar 

  5. American Society for Testing Materials (1971) 1969 ASTM book of ASTM standards: recommended practices for spectrochemical computations (E 158–66), Philadelphia

  6. Avni R (1978) In: Grove EL (ed) Applied atomic spectroscopy, vol 1, chapter 4. Plenum Press, New York.

    Google Scholar 

  7. Axner O, Lindgren I, Magnusson I, Rubinstein-Dunlop, Göteborg, unpublished work

  8. Aziz A, Broekaert JAC, Leis F (1981) Spectrochim Acta 36B:251–260

    Google Scholar 

  9. Aziz A, Broekaert JAC, Leis F (1982) Spectrochim Acta 37B:369–379

    Google Scholar 

  10. Aziz A, Broekaert JAC, Leis F (1982) Spectrochim Acta 37B:381–389

    Google Scholar 

  11. Aziz A, Broekaert JAC, Laqua K, Leis F (1984) Spectrochim Acta 39B:1091–1103

    Google Scholar 

  12. Bacon JR, Ure A (1984) Analyst 109:1229–1254

    Google Scholar 

  13. Barnes RM (1978) CRC Rev Anal Chem 8:203–296

    Google Scholar 

  14. Barnett WB, Bohler W, Carnick GR, Slavin W (1985) Spectrochim Acta 40B:1689–1703

    Google Scholar 

  15. Barnett WB, Fassel VA, Kniseley RN (1968) Spectrochim Acta 23B:643–664

    Google Scholar 

  16. Baumgardt B, Klockenkämper R, Tölg G (1985) XXIV Coll Spectrosc Intern, Garmisch-Partenkirchen 1985, Book of Abstracts, p 738

  17. Baxter DC, Frech W, Lundberg E (1985) Analyst 110:475–485

    Google Scholar 

  18. Beenakker CIM (1977) Spectrochim Acta 32B:173–178

    Google Scholar 

  19. Beenakker CIM, Boumans PWJM, Rommers PJ (1980) Philips Techn Rev 39:65–77

    Google Scholar 

  20. Beenakker CIM, Bosman B, Boumans PWJM (1978) Spectrochim Acta 33B:371–381

    Google Scholar 

  21. Berglund B, Thelin B (1982) Analyst 107:867–871

    Google Scholar 

  22. Berndt H (1984) Spectrochim Acta 39B:1121–1128

    Google Scholar 

  23. Berndt H, Jackwerth E (1975) Spectrochim Acta 30B:169–177

    Google Scholar 

  24. Berndt H, Messerschmidt J (1982) Anal Chim Acta 136:407–411

    Google Scholar 

  25. Berndt H, Messerschmidt J (1983) Fresenius Z Anal Chem 316:201–204

    Google Scholar 

  26. Berneron R (1978) Spectrochim Acta 33B:665–673

    Google Scholar 

  27. Birks LS (1969) X-ray spectrochemical analysis. Wiley Interscience, New York

    Google Scholar 

  28. Birks LS (1985) Spectrochim Acta 40B:1161–1166

    Google Scholar 

  29. Birks LS (1971) Electron probe microanalysis, Chemical analysis, vol 17. Wiley Interscience, New York

    Google Scholar 

  30. Bollo-Kamara A, Codding EG (1981) Spectrochim Acta 36B:973–982

    Google Scholar 

  31. Bolshov VA, Zybin AV, Smirenkins II (1981) Spectrochim Acta 36B:1143–1152

    Google Scholar 

  32. Bos AJJ, Van Der Stap CCAH, Vis RD, Valkovic V (1983) Spectrochim Acta 38B:1209–1215

    Google Scholar 

  33. Boumans PWJM, Bastings LC, De Boer FJ, Van Kollenburg LWJ (1978) Fresenius Z Anal Chem 291:10–19

    Google Scholar 

  34. Boumans PWJM, De Boer FJ (1972) Spectrochim Acta 27B:391–414

    Google Scholar 

  35. Boumans PWJM, De Boer FJ (1975) Spectrochim Acta 30B:309–334

    Google Scholar 

  36. Boumans PWJM, De Boer FJ, Dahmen FJ, Hoelzel H, Meier A (1975) Spectrochim Acta 30B:449–469

    Google Scholar 

  37. Boumans PWJM, Lux-Steiner MCh (1982) Spectrochim Acta 37B:97–126

    Google Scholar 

  38. Boumans PWJM, De Boer FJ (1976) Spectrochim Acta 31B:355–375

    Google Scholar 

  39. Boumans PWJM, Vrakking JJAM (1985) Spectrochim Acta 39B:1261–1290

    Google Scholar 

  40. Boumans PWJM, Vrakking JJAM (1985) Spectrochim Acta 40B:1085–1105

    Google Scholar 

  41. Boumans PWJM, Vrakking JJAM (1985) Spectrochim Acta 40B:1107–1125

    Google Scholar 

  42. Broekaert JAC (1982) Trends Anal Chem 1:249–253

    Google Scholar 

  43. Broekaert JAC (1982) Spectrochim Acta 37B:65–68

    Google Scholar 

  44. Broekaert JAC, Keliher P, McLaren J (1986) ICP Inform Newslett 11:689–698

    Google Scholar 

  45. Broekaert JAC, Leis F (1979) Anal Chim Acta 109:73–83

    Google Scholar 

  46. Broekaert JAC, Leis F (1980) Fresenius Z Anal Chem 300:22–27

    Google Scholar 

  47. Broekaert JAC, Leis F, Laqua K (1981) Talanta 28:745–752

    Google Scholar 

  48. Broekaert JAC, Leis F, Laqua K (1985) In: Sansoni B (ed) Instrumentelle Multielementanalyse. Verlag Chemie, Weinheim, p 359

    Google Scholar 

  49. Broekaert JAC, Leis F, Laqua K, unpublished work

  50. Brooks EI, Timmins KJ (1985) Analyst 110:557–558

    Google Scholar 

  51. Brown AA, Milner BA, Taylor A (1985) Analyst 110:501–505

    Google Scholar 

  52. Brown AA, Taylor A (1985) Analyst 110:579–582

    Google Scholar 

  53. Chan S, Montaser A (1985) Spectrochim Acta 40B:1467–1472

    Google Scholar 

  54. Chang SB, Chakrabarti CL (1985) Prog Anal At Spectrosc 8:83–191

    Google Scholar 

  55. Coburn JW, Harrison WW (1981) Appl Spectrosc Rev 17:95–164

    Google Scholar 

  56. Decker RJ (1980) Spectrochim Acta 35B:19–35

    Google Scholar 

  57. De Galan L, De Loos-Vollebregt MTC (1979) Proc 21th Coll Spectrosc Int and 8th Int Conf Atomic Spectrosc, Cambridge 1979, Keynote Lectures. Heyden, London, p 49

  58. De Loos-Vollebregt MTC, De Galan L (1985) Prog Anal At Spectrosc 8:47–81

    Google Scholar 

  59. Delves HT (1970) Analyst 95:431–438

    Google Scholar 

  60. Demers DR, Allemand CH (1981) Anal Chem 53:1915–1921

    Google Scholar 

  61. Denoyer E, Van Grieken R, Adams F, Natusch DFS (1982) Anal Chem 54:26A-41A

    Google Scholar 

  62. Disam A, Tschöpel P, Tölg G (1982) Fresenius Z Anal Chem 310:131–143

    Google Scholar 

  63. Dogan M, Laqua K, Massmann H (1971) Spectrochim Acta 26B:631–649

    Google Scholar 

  64. Dogan M, Laqua K, Massmann H (1972) Spectrochim Acta 27B:65–88

    Google Scholar 

  65. Douglas DJ, French JB (1981) Anal Chem 53:37–41

    Google Scholar 

  66. Dymott TC, Wassal MP, Whiteside PJ (1985) Analyst 110:467–474

    Google Scholar 

  67. Eller R, Klockenkämper R, Tölg G (1985) XXIV Coll Spectrosc Intern, Garmisch-Partenkirchen 1985, Book of Abstracts, p 362

  68. Faires LM (1985) Spectrochim Acta 40B:1473–1483

    Google Scholar 

  69. Faires LM, Palmer BA, Engelmann Jr R, Niemczyk TM (1984) Spectrochim Acta 39B:819–828

    Google Scholar 

  70. Falk H (1977) Spectrochim Acta 32B:437–443

    Google Scholar 

  71. Falk H, Hoffmann E, Lüdke Ch (1984) Spectrochim Acta 39B:283–294

    Google Scholar 

  72. Falk H, Hoffmann E, Lüdke Ch, Ottaway JM, Giri SK (1983) Analyst 108:1459–1465

    Google Scholar 

  73. Fry RC, Denton MB, Windsor DL, Northway SJ (1979) Appl Spectrosc 33:393–404

    Google Scholar 

  74. Furuta N, McLeod CW, Haraguchi H, Fuwa K (1980) Appl Spectrosc 34:211–216

    Google Scholar 

  75. Garten RPH (1984) Protoneninduzierte Röntgen-Emissions-Spektrometrie (PIXE) Analytische Anwendungen. In: Analytiker Taschenbuch, Band 4. Springer, Berlin Heidelberg New York Tokyo

    Google Scholar 

  76. Gilfrich JV, Skelton EF, Quadri SB, Kirkland JP, Nagel DJ (1983) Anal Chem 55:187–190

    Google Scholar 

  77. Goulden PD, Anthony DHJ (1984) Anal Chem 56:2327–2329

    Google Scholar 

  78. Grasserbauer M (1985) Fresenius Z Anal Chem 322:105–123

    Google Scholar 

  79. Gray AL (1985) Spectrochim Acta 40B:1525–1537

    Google Scholar 

  80. Gray AL, Date AR (1983) Analyst 108:1033–1050

    Google Scholar 

  81. Greenfield S (1983) Spectrochim Acta 38B:93–105

    Google Scholar 

  82. Greenfield S, Jones IL, Berry CT (1964) Analyst 89:713–720

    Google Scholar 

  83. Greenfield S, Thomsen M (1985) Spectrochim Acta 40B:1369–1377

    Google Scholar 

  84. Grimm W (1968) Spectrochim Acta 23B:443–454

    Google Scholar 

  85. Gunn AM, Millard DL, Kirkbright GF (1978) Analyst 103:1066–1073

    Google Scholar 

  86. Hallam C, Thompson KC (1985) Analyst 110:497–500

    Google Scholar 

  87. Harrison WW, Hess KR, Markus RK, King FL (1986) Anal Chem 58:341A-356A

    Google Scholar 

  88. Harvey ChE (1964) Semi-quantitative spectrochemistry. Appl Res Lab Corp, Glendale CA

  89. Havrilla GJ, Weeks SJ, Travis JC (1982) Anal Chem 54:2566–2570

    Google Scholar 

  90. Hertz G (1923) Z Phys 18:307–316

    Google Scholar 

  91. Heumann KG (1980) Toxicol Environ Chem Rev 3:111–129

    Google Scholar 

  92. Heumann KG, Beer F, Weiss H (1983) Mikrochim Acta I:95–108

    Google Scholar 

  93. Houk RS, Fassel VA, Flesch GD, Svec HJ, Gray AL, Taylor CE (1980) Anal Chem 52:2283–2289

    Google Scholar 

  94. Human HGC, Omenetto N, Cavalli P, Rossi G (1984) Spectrochim Acta 39B:1345–1363

    Google Scholar 

  95. Human HGC, Scott RH, Oakes AR, West CD (1976) Analyst 101:265–271

    Google Scholar 

  96. Jakubowski N, Stüwer D, Tölg G, Int J Mass Spectrom Ion Proc, in press

  97. Jansen EBM, Demers DR (1985) Analyst 110:541–545

    Google Scholar 

  98. Jansen JAJ, Witmer AW (1982) Spectrochim Acta 37B:483–491

    Google Scholar 

  99. Jenkins R (1977) Einführung in die Röntgenspektralanalyse. Heyden, London

    Google Scholar 

  100. Johnson GW, Taylor HE, Skogerboe RK (1979) Spectrochim Acta 34B:197–212

    Google Scholar 

  101. Kaiser G, Götz D, Schoch P, Tölg G (1975) Talanta 22:889–899

    Google Scholar 

  102. Kessler W, Gebhardt F (1967) Glastechn Ber 40:194–200

    Google Scholar 

  103. Kikkert JN (1983) Spectrochim Acta 38B:1497–1508

    Google Scholar 

  104. Kimberley EL, Rice GW, Fassel VA (1984) Anal Chem 56:289–292

    Google Scholar 

  105. Kingdon KH (1923) Phys Rev 21:408–418

    Google Scholar 

  106. McKinnon PJ, Giess KC, Knight TV (1981) In: Barnes RM (ed) Developments in atomic plasma spectrochemical analysis. Heyden, London, p 287

    Google Scholar 

  107. Kirkbright GF, Snook RD (1979) Anal Chem 51:1938–1941

    Google Scholar 

  108. Kirkbright GF, Walton SJ (1982) Analyst 107:276–281

    Google Scholar 

  109. Klockenkämper R, Laqua K, Dogan M (1980) Spectrochim Acta 35B:527–534

    Google Scholar 

  110. Knöchel A, Petersen W, Tolkiehn G (1985) Anal Chim Acta 173:105–116

    Google Scholar 

  111. Knoth J, Schwenke H (1978) Fresenius Z Anal Chem 291:200–204

    Google Scholar 

  112. Ko JB (1984) Spectrochim Acta 39B:1405–1423

    Google Scholar 

  113. Koch KH (1984) Spectrochim Acta 39B:1067–1079

    Google Scholar 

  114. Koch KH, Kretschmer M, Grünenberg D (1983) Mikrochim Acta II:225–237

    Google Scholar 

  115. Koirtyohann RS, Pickett EE (1965) Anal Chem 37:601–603

    Google Scholar 

  116. Kollotzek D, Oechsle D, Kaiser G, Tschöpel P, Tölg G (1984) Fresenius Z Anal Chem 318:485–489

    Google Scholar 

  117. Kollotzek D, Tschöpel P, Tölg G (1982) Spectrochim Acta 37B:91–96

    Google Scholar 

  118. Kollotzek D, Tschöpel P, Tölg G (1984) Spectrochim Acta 39B:625–636

    Google Scholar 

  119. Korolov VV, Vainshtein EE (1959) Zh Anal Khim 14:658–662

    Google Scholar 

  120. Krivan V (1985) Neutronenaktivierungsanalyse.In: Analytiker-Taschenbuch, vol 5. Springer, Berlin Heidelberg New York Tokyo, p 36

    Google Scholar 

  121. Kroonen J, Vader D (1963) Line interference in emission spectrographic analysis, Elsevier, Amsterdam

    Google Scholar 

  122. Krupa RJ, Long GL, Winefordner JD (1985) Spectrochim Acta 40B:1485–1494

    Google Scholar 

  123. Langmyhr FJ, Wibetoe G (1985) Prog Anal At Spectrosc 8:193–256

    Google Scholar 

  124. Laqua K (1979) Analytical spectroscopy using laser sources. In: Omenetto N (ed) Analytical laser spectroscopy. Wiley, London

    Google Scholar 

  125. Layman LR, Lichte FE (1982) Anal Chem 54:638–642

    Google Scholar 

  126. Littlejohn D, Ottaway JM (1979) Analyst 104:208–223

    Google Scholar 

  127. Li-Xing Z, Kirkbright GF, Cope MJ, Walton JM (1983) Appl Spectrosc 37:250–254

    Google Scholar 

  128. Long GL, Winefordner JD (1984) Appl Spectrosc 38:563–567

    Google Scholar 

  129. Maessen FJMJ, Kreunig G, Balke J (1986) Spectrochim Acta 41B:3–25

    Google Scholar 

  130. Mandelstam SL, Nedler VV (1961) Spectrochim Acta 17:885–894

    Google Scholar 

  131. Margoshes M, Scribner BF (1959) Spectrochim Acta 15:138–145

    Google Scholar 

  132. Massmann H, El Gohary Z, Gücer S (1976) Spectrochim Acta 31B:399–409

    Google Scholar 

  133. Mattson WA, Bentz BL, Harrison WW (1976) Anal Chem 48:489–491

    Google Scholar 

  134. Mavrodineanu R, Boiteux B (1965) Flame spectroscopy. Wiley, New York

    Google Scholar 

  135. Mavrodineanu R, Hughes RC (1963) Spectrochim Acta 19:1309–1317

    Google Scholar 

  136. Mermet JM, Trassy C, Ripoche P (1981) In: Barnes RM (ed) Developments in atomic plasma spectrochemical analysis. Heyden, London, p 245

    Google Scholar 

  137. Mermet JM, Trassy C (1977) Appl Spectrosc 31:237–239

    Google Scholar 

  138. Meyer GA, Barnes RM (1985) Spectrochim Acta 40B:893–905

    Google Scholar 

  139. Meyer A, Hofer Ch, Tölg G, Raptis S, Knapp G (1979) Fresenius Z Anal Chem 296:337–344

    Google Scholar 

  140. Meyer GA, Thompson MD (1985) Spectrochim Acta 40B:195–207

    Google Scholar 

  141. Millard DL, Shan HC, Kirkbright GF (1980) Analyst 105:502–508

    Google Scholar 

  142. Myers SA, Tracy DH (1983) Spectrochim Acta 38B:1227–1253

    Google Scholar 

  143. Montaser A, Fassel VA (1976) Anal Chem 48B:1490–1499

    Google Scholar 

  144. Niemax K (1985) Appl Phys B 38:147–157

    Google Scholar 

  145. Nixon DE, Fassel VA, Kniseley RN (1974) Anal Chem 46:210–213

    Google Scholar 

  146. Nürnberg HW (1982) Pure Appl Chem 54:853–878

    Google Scholar 

  147. Müller KH, Oechsner H (1983) Mikrochim Acta [Wien] Suppl. 10:51–60

    Google Scholar 

  148. Ohls K, Sommer D (1984) ICP Inform Newslett 9:555–563

    Google Scholar 

  149. Omenetto N, Berthoud Th, Cavalli P, Rossi G (1985) Anal Chem 57:1256–1261

    Google Scholar 

  150. Omenetto N, Human HGC (1984) Spectrochim Acta 39B:1333–1343

    Google Scholar 

  151. Omenetto N, Human HGC (1984) Spectrochim Acta 39B:115–117

    Google Scholar 

  152. Omenetto N, Winefordner JD (1979) Prog Anal At Spectrosc 2:1–183

    Google Scholar 

  153. Ortner HM, Schlemmer G, Welz B, Wegscheider W (1985) Spectrochim Acta 40B:959–977

    Google Scholar 

  154. Piwonka J, Kaiser G, Tölg G (1985) Fresenius Z Anal Chem 321:225–234

    Google Scholar 

  155. Prügger M, Torge R (1969) German Patent 1964469, filed December 23rd

  156. Quentmeier A, Laqua K (1981) In: Koch KH, Massmann H (Hrsg) 13, Spektrometertagung. de Gruyter, Berlin, p 37

  157. Reed TB (1961) J Appl Phys 32:821–824

    Google Scholar 

  158. Reed TB (1961) J Appl Phys 32:2534–2535

    Google Scholar 

  159. Reednick J (1979) American Laboratory, May:127–133

  160. Rezaaijaan R, Hieftje GM (1985) Anal Chem 57:412–415

    Google Scholar 

  161. Rice GW, D'Silva AP, Fassel VA (1985) Spectrochim Acta 40B:1573–1584

    Google Scholar 

  162. Ruch C, Rastegar F, Heimburger R, Maier E, Leroy MJF (1985) Anal Chem 57:1691–1694

    Google Scholar 

  163. Salin ED, Horlick G (1979) Anal Chem 51:2284–2286

    Google Scholar 

  164. Salin ED, Sing RLA (1984) Anal Chem 56:2596–2598

    Google Scholar 

  165. Scheeline A (1984) Prog Anal At Spectrosc 7:21–65

    Google Scholar 

  166. Schmid W, Krivan V (1985) Anal Chem 57:30–34

    Google Scholar 

  167. Schulten HR, Monkhouse PB, Müller R (1982) Anal Chem 54:654–659

    Google Scholar 

  168. Schwedt G, Rössner B, Yan D (1985) In: Sansoni B (ed) Instrumentelle Multielementanalyse. Verlag Chemie, Weinheim, p 445

    Google Scholar 

  169. Schwenke H, Knoth J (1980) In: Brätter P, Schramel P (eds) Trace element analytical chemistry in medicine and biology, de Gruyter W, Berlin, p 307

    Google Scholar 

  170. Sebastiani E, Ohls K, Riemer G (1973) Fresenius Z Anal Chem 264:105–109

    Google Scholar 

  171. Scott RH, Fassel VA, Kniseley RN, Nixon DE (1974) Anal Chem 46:75–80

    Google Scholar 

  172. Siemer DD (1983) Appl Spectrosc 37:552–557

    Google Scholar 

  173. Skogerboe RK, Coleman GN (1976) Appl Spectrosc 30:504–507

    Google Scholar 

  174. Skogerboe RK, Coleman GN (1976) Anal Chem 48:611A-622A

    Google Scholar 

  175. Slickers K (1977) Die automatische Emissionsspektralanalyse. Verlag der Brühlschen Universitätsdruckerei, Lahn-Gießen

    Google Scholar 

  176. Smith S, Schleicher RG, Hieftje GM (1982) 33rd Pittsburgh Conf on Analytical Chemistry and Applied Spectroscopy, Atlantic City

  177. Souillard JC, Robin JP (1972) Analusis 1:427–433

    Google Scholar 

  178. Sommer D, Ohls K (1980) Fresenius Z Anal Chem 304:97–103

    Google Scholar 

  179. Steinbrech B, König KH (1983) Fresenius Z Anal Chem 316:685–688

    Google Scholar 

  180. Sturgeon RE, Chakrabarti CL (1978) Prog Anal At Spectrosc 1:5–199

    Google Scholar 

  181. Sturman BT (1985) Appl Spectrosc 39:48–56

    Google Scholar 

  182. Tavlaridis A, Neeb R (1978) Fresenius Z Anal Chem 292:199–202

    Google Scholar 

  183. Taylor CE, Floyd TL (1981) Appl Spectrosc 35:408–413

    Google Scholar 

  184. Taylor P, Schutyser P (1986) Spectrochim Acta 41B:81–103

    Google Scholar 

  185. Thompson M, Pahlavanpour B, Walton SJ (1978) Analyst 103:568–579

    Google Scholar 

  186. Thompson M, Walsh JN (1983) A handbook of ICP spectrometry. Chapman and Hall, New York

    Google Scholar 

  187. Tohyama K, Ono J, Onodera M, Saeki M (1978) Pulse distribution analysis methods for emission spectrochemical analysis. Okochi Memorial Foundation

  188. Travis JC, Turk GC, De Voe JR, Schenk PK (1984) Prog Anal At Spectrosc 7:199–241

    Google Scholar 

  189. Travis JC, Turk GC, Green RB (1974) Anal Chem 44:1006A-1018A

    Google Scholar 

  190. Tschöpel P, Kotz L, Schulze W, Weber M, Tölg G (1980) Fresenius Z Anal Chem 302:1–14

    Google Scholar 

  191. Tschöpel P, Tölg G (1982) J Trace Microprobe Techn 1:1–77

    Google Scholar 

  192. Turk GC, Travis JC, De Voe JR, O'Haver TC (1979) Anal Chem 51:1890–1896

    Google Scholar 

  193. Turk GC, Watters RL (1985) Anal Chem 57:1979–1983

    Google Scholar 

  194. Tyson JF (1985) Analyst 110:419–429

    Google Scholar 

  195. Uden PC (1981) In: Barnes RM (ed) Developments in atomic plasma spectrochemical analysis. Heyden, London, p 302

    Google Scholar 

  196. Van Dalen JPJ, De Lezenne-Coulander PA, De Galan L (1977) Anal Chim Acta 94:1–19

    Google Scholar 

  197. Van der Plas PSC, De Galan L (1984) Spectrochim Acta 39B:1161–1169

    Google Scholar 

  198. Vogt H, Heinen HJ, Meier S (1983) Laser Optoelektron 1:23–29

    Google Scholar 

  199. Volland G, Tschöpel P, Tölg G (1981) Spectrochim Acta 36B:901–917

    Google Scholar 

  200. Völlkopf U, Grobenski Z, Tamm R, Welz B (1985) Analyst 110:573–577

    Google Scholar 

  201. Walters JP, Eaton WS (1983) Anal Chem 55:57–64

    Google Scholar 

  202. Welz B (1976) Atomic absorption spectrometry. Verlag Chemie, Weinheim

    Google Scholar 

  203. Welz B, Melcher M (1981) Spectrochim Acta 36B:439–462

    Google Scholar 

  204. Welz B, Melcher M (1983) Analyst 108:213–224

    Google Scholar 

  205. Wendt RH, Fassel VA (1965) Anal Chem 37:920–922

    Google Scholar 

  206. Werner HW, Garten RPH (1984) Rep Prog Phys 47:221–344

    Google Scholar 

  207. Winge RK, Peterson VJ, Fassel VA (1979) Appl Spectrosc 33:206–219

    Google Scholar 

  208. Wirz P, Debus H, Hanle W, Scharmann A (1982) Spectrochim Acta 37B:1013–1020

    Google Scholar 

  209. Wobrauschek P, Aiginger H (1975) Anal Chem 47:852–855

    Google Scholar 

  210. Wünsch G, Gzech N, Hegenberg G (1982) Fresenius Z Anal Chem 310:62–69

    Google Scholar 

  211. Yamamoto M, Murayama S, Ito M, Yasuda M (1980) Spectrochim Acta 35B:43–50

    Google Scholar 

  212. Zil'bershtein KhI (1977) Spectrochemical analysis of pure substances. Hilger, London

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Broekaert, J.A.C., Tölg, G. Recent developments in atomic spectrometry methods for elemental trace determinations. Z. Anal. Chem. 326, 495–509 (1987). https://doi.org/10.1007/BF00468215

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00468215

Keywords

Navigation