Skip to main content
Log in

DCCD induced sodium uptake by Anacystis nidulans

  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The Na level inside cells of Anacystis nidulans is lower than in the external medium reflecting an effective Na extrusion. Na efflux is an active process and is driven by a Na+/H+-antiport system. The necessary H+-gradient is generated by a proton translocating ATPase in the plasmalemma. This ATPase (electrogenic proton pump) also produces the membrane potential (about -110 mV) responsible for K accumulation. N,N′-dicyclohexylcarbodiimide (DCCD) inhibits the ATPase and the H+-gradient completely, but the membrane potential is only reduced (<-70 mV), since K efflux initiated by DCCD maintains the potential partly by diffusion potential.

With DCCD, active Na efflux is inhibited thus revealing Na uptake and leading by equilibration to the membrane potential to a 5–20 fold accumulation. Na uptake depends on the DCCD concentration with an optimum at (1–2)×10-4 M DCCD. Pretreatment with DCCD for a few minutes followed by replacement of the medium suffices to induce Na uptake.

DCCD induced Na influx is about 5 times faster in light than in darkness, and the steady state is reached much earlier in light; a 5 fold increase by light was also found for Rb uptake with untreated cells. Valinomycin stimulates the influx of Rb to about the same rate in light and dark. Therefore light may unspecifically increase the permeability of the plasma-lemma probably via the ATP level. Similarly to DCCD also 3×10-3 M N-ethylmaleimide induces Na uptake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DCCD:

N,N′-dicyclohexylcarbodiimide

NEM:

N-ethylmaleimide

CCCP:

carbonylcyanide m-chlorophenylhydrazone

Pipes:

piperazine-N,N′-bis(2-ethanesulfonic acid)

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

References

  • Altendorf, K., Hirata, H., Harold, F. M.: Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli. J. biol. Chem. 250, 1405–1412 (1975)

    Google Scholar 

  • Bisalputra, T., Brown, D. L., Weier, T. E.: Possible respiratory sites in a blue-green alga Nostoc sphaericum as demonstrated by potassium tellurite and tetranitro-blue tetrazolium reduction. J. Ultrastruct. Res. 27, 182–197 (1969)

    Google Scholar 

  • Bornefeld, T., Simonis, W.: Effects of light, temperature, pH, and inhibitors on the ATP level of the blue-green alga Anacystis nidulans. Planta (Berl.) 115, 308–318 (1974)

    Google Scholar 

  • Dewar, M. A., Barber, J.: Cation regulation in Anacystis nidulans. Planta (Berl.) 113, 143–155 (1973)

    Google Scholar 

  • Harold, F. M.: Chemiosmotic interpretation of active transport in bacteria. Ann. N.Y. Acad. Sci. 227, 297–311 (1974)

    Google Scholar 

  • Harold, F. M., Baarda, J. R., Baron, C., Abrams, A.: Dio-9 and chlorohexidine: inhibitors of membrane-bound ATPase and cation transport in Streptococcus faecalis. Biochim. biophys. Acta (Amst.) 183, 129–139 (1969a)

    Google Scholar 

  • Harold, F. M., Baarda, J. R., Baron, C., Abrams, A.: Inhibition of membrane-bound ATPase and cation transport in Streptococcus faecalis by N,N′-dicyclohexylcarbodiimide. J. biol. Chem. 244, 2261–2268 (1969b)

    Google Scholar 

  • Harold, F. M., Papineau, D.: Cation transport and electrogenesis by Streptococcus faecalis. I. The membrane potential. J. Membrane Biol. 8, 27–44 (1972a)

    Google Scholar 

  • Harold, F. M., Papineau, D.: Cation transport and electrogenesis by Streptococcus faecalis. II. Proton and sodium extrusion. J. Membrane Biol. 8, 45–62 (1972b)

    Google Scholar 

  • Klein, W. L., Boyer, P. D.: Energization of active transport by Escherichia coli. J. biol. Chem. 247, 7257–7265 (1972)

    Google Scholar 

  • Kratz, W. A., Myers, J.: Nutrition and growth of several blue-green algae. Amer. J. Bot. 42, 282–287 (1955)

    Google Scholar 

  • Maloney, P. C., Wilson, T. H.: ATP synthesis driven by a proton-motive force in Streptococcus lactis. J. Membrane Biol. 25, 285–310 (1975)

    Google Scholar 

  • McCarty, R. E., Pittman, P. R., Tsuchiya, Y.: Light-dependent inhibition of photophosphorylation by N-ethylmaleimide. J. biol. Chem. 247, 3048–3051 (1972)

    Google Scholar 

  • Palek, J., Stewart, G., Lionetti, F. J.: The dependence of shape of human erythrocyte ghosts on calcium, magnesium and adenosine triphosphate. Blood 44, 583–597 (1974)

    Google Scholar 

  • Paschinger, H.: NaCl stimulated respiration with Anacystis nidulans. Z. allg. Mikrobiol. (in press, 1977)

  • Schmetterer, G.: Zn-Aufnahme durch Erythrozyten-Ghosts. Thesis, University of Vienna (1976)

  • Tromballa, H. W., Broda, E.: Der freie Raum synchroner Chlorella. Arch. Mikrobiol. 86, 281–290 (1972)

    Google Scholar 

  • West, I. C., Mitchell, P.: Proton/sodium ion antiport in Escherichia coli. Biochem. J. 144, 87–90 (1974)

    Google Scholar 

  • Wittig, G., Schöllkopf, U.: Über Triphenylphosphinmethylene als olefinbildende Reagenzien. Chem. Ber. 87, 1318–1330 (1954)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paschinger, H. DCCD induced sodium uptake by Anacystis nidulans . Arch. Microbiol. 113, 285–291 (1977). https://doi.org/10.1007/BF00492037

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00492037

Key words

Navigation