Skip to main content
Log in

Evolutionary relationships between laboratory mice and subspecies of Mus musculus based on the genetic study of pancreatic proteinase loci, Prt-1, Prt-2, Prt-3, and Prt-6

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Various patterns of mouse pancreatic proteinase activity bands were observed on agarose gel electrophoresis. Prt-1 aand Prt-1 bgenes control the positive (PRT-1A) and negative (PRT-1B) expression of tryptic band V, respectively; Prt-2 aand Prt-2 bcorrespond to chymotryptic bands II (PRT-2A) and III (PRT-2B); Prt-3 aand Prt-3 bcontrol the low (PRT-3A) and high (PRT-3B) tryptic activities of band IV; the Prt-1 and Prt-3 loci are closely linked on the same chromosome; Prt-6 aand Prt-6 bcorrespond to tryptic bands I (PRT-6A) and I′ (PRT-6B). Twenty-four laboratory strains from the United States showed the phenotype PRT-1A, PRT-3A, and PRT-2A. Of laboratory strains established in Europe, 6 showed PRT-1A, PRT-3A, and PRT-2A, and 10 had PRT-1B, PRT-3A, and PRT-2A bands. Most wild mice around the world and their descendants showed the phenotype PRT-1B, PRT-3B, and PRT-2A. Only the phenotype of M. m. brevirostris was PRT-1A, PRT-3A, and PRT-2A, which was the same as most laboratory inbred strains. PRT-2B was observed mainly in Japanese (M. m. molossinus) and Korean (M. m. yamashinai) wild mice. PRT-6B was detected only in Mus spicilegus and Mus caroli, but all other mice including wild populations and laboratory strains showed PRT-6A. New biochemical phenotypes such as PRT-2C and PRT-3C were also found in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bonhomme, F., Catalan, J., Britton-Davidian, J., Chapman, V. M., Moriwaki, K., Nevo, E., and Thaler, L. (1984). Biochemical diversity and evolution in the genus Mus. Biochem. Genet. 22275.

    Google Scholar 

  • Ferris, S. D., Sage, R. D., and Wilson, A. C. (1982). Evidence from mtDNA sequences that common laboratory strains of inbred mice are descended from a single female. Nature 295163.

    Google Scholar 

  • Ferris, S. D., Sage, R. D., Prager, E. M., Ritte, U., and Wilson, A. C. (1983). Mitochondrial DNA evolution in mice. Genetics 105681.

    Google Scholar 

  • Kondo, K., Nozawa, K., Tomita, T., and Esaki, K. (1957). On the origins and characteristics of inbred strains of mice established in Japan. Exp. Anim. 6107 (Japanese).

    Google Scholar 

  • Kurihara, Y., Miyashita, N., Moriwaki, K., Petras, M. L., Bonhomme, F., Cho, W. S., and Kohno, S. (1985). Serological survey of T-lymphocyte differentiation antigens in wild mice. Immunogenetics 22211.

    Google Scholar 

  • Miyashita, N., Moriwaki, K., Minezawa, M., Yonekawa, H., Bonhomme, F., Migita, S., Yu, Z., Lu, D., Cho, W. S., and Thohari, M. (1985). Allelic constitution of the hemoglobin beta chain in wild populations of the house mouse, Mus musculus. Biochem. Genet. 23975.

    Google Scholar 

  • Moriwaki, K. Shiroishi, T., Minezawa, M., Aotsuka, T., and Kondo, K. (1979). Frequency distribution of histocompatibility-2 antigenic specificities in the Japanese wild mouse genetically remote from the european subspecies. J. Immunogenet. 699.

    Google Scholar 

  • Moriwaki, K., Shiroishi, T., Yonekawa, H., Miyashita, N., and Sagai, T. (1982). Genetic status of Japanese wild mice and immunological characters of their H-2 antigens. In Muramatu, T., Gachelin, G., Moscona, A. A., and Ikawa, Y. (eds.), Teratocarcinoma and Embryonic Cell Interactions Japan Scientific Societies Press and Academic Press, Tokyo, pp. 157–175.

    Google Scholar 

  • Natsume-Sakai, S., Moriwaki, K., Amano, S., Hayakawa, J., Kaidoh, T., and Takahashi, M. (1979). Allotypes of C3 in laboratory and wild mouse distinguished by alloantisera. J. Immunol. 123216.

    Google Scholar 

  • Odaka, T., Ikeda, H., Moriwaki, K., Matsuzawa, A., Mizuno, M., and Kondo, K. (1978). Genetic resistance in Japanese wild mice (Mus musculus molossinus) to an NB-tropic friend murinne leukemia virus. J. Natl. Cancer Inst. 611301.

    Google Scholar 

  • Otto, J., and von Deimling, O. (1981). Prt-4 and Prt-5: New constituents of a gene cluster on chromosome 7 coding for esteroproteases in the submandibular gland of the house mouse. Biochem. Genet. 19431.

    Google Scholar 

  • Potter, M., and Klein, J. (1979). Genealogy of the more commonly used inbred mouse strains. In Altman, P. L., and Katz, D. D. (eds.), Part 1. Mouse and Rat, Inbred and Genetically Defined Strains of Laboratory Animals Federation of American Societies for Experimental Biology, Bethesda, Md., pp. 16–17.

    Google Scholar 

  • Sage, R. D., Whitney, J. B., III, and Wilson, A. C. (1986). Genetic analysis of a hybrid zone between domesticus and musculus mice (Mus musculus complex): Hemoglobin polymorphism. Curr. Topics Microbiol. Immunol. 12775.

    Google Scholar 

  • Selander, R. K., and Yang, S. Y. (1969). Protein polymorphism and genic heterozygosity in a wild population of the house mouse (Mus musculus). Genetics 63653.

    Google Scholar 

  • Selander, R. K., Hunt, G., and Yang, S. Y. (1969). Protein polymorphism and genic heterozygosity in two European subspecies of the house mouse. Evolution 23379.

    Google Scholar 

  • Suzuki, H., Miyashita, N., Moriwaki, K., Kominami, R., Muramatsu, M., Kanehisa, T., Bonhomme, F., Petras, M. L., Yu, Z.-H., and Lu, D.-Y. (1986). Evolutionary implication on heterogeneity of non-transcribed spacer region of ribosomal DNA repeating units in various subspecies of Mus musculus. Mol. Biol. Evol. 3126.

    Google Scholar 

  • Watanabe, T. (1983). Purification and properties of genetic variants of mouse trypsinogen. Biochem. Genet. 21761.

    Google Scholar 

  • Watanabe, T., and Tomita, T. (1974). Genetic study of pancreatic proteinase and α-amylase in mice (Mus musculus). Biochem. Genet. 12419.

    Google Scholar 

  • Watanabe, T., Ogasawara, N., and Goto, H. (1976a). Genetic study of pancreatic proteinase in mice (Mus musculus): Genetic variants of trypsin and chymotrypsin. Biochem. Genet. 14697.

    Google Scholar 

  • Watanabe, T., Ogasawara, N., and Goto, H. (1976b). Genetic study of pancreatic proteinase in mice (Mus musculus): Linkage of the Prt-2 locus on chromosome 8. Biochem. Genet. 14999.

    Google Scholar 

  • Watanabe, T., Ito, T., and Ogasawara, N. (1982). Biochemical markers of three strains derived from Japanese wild mouse (Mus musculus molossinus). Biochem Genet. 20385.

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O., Hayashi, J. -I., Watanabe, J., Miyashita, N., Petras, M. L., and Tagashira, Y. (1981). Evolutionary relationships among five subspecies of Mus musculus based on restriction enzyme cleavage patterns of mitochondrial DNA. Genetics 98801.

    Google Scholar 

  • Yonekawa, H., Moriwaki, K., Gotoh, O., Miyashita, N., Migita, S., Bonhomme, F., Hjorth, J. P., Petras, M. L., and Tagashira, Y. (1982). Origins of laboratory mice deduced from restriction patterns of mitochondrial DNA. Differentiation 22222.

    Google Scholar 

  • Zeniya, C. (1787). Chingansodategusa.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Miyashita, N., Moriwaki, K. et al. Evolutionary relationships between laboratory mice and subspecies of Mus musculus based on the genetic study of pancreatic proteinase loci, Prt-1, Prt-2, Prt-3, and Prt-6 . Biochem Genet 25, 239–251 (1987). https://doi.org/10.1007/BF00499317

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00499317

Key words

Navigation