Skip to main content
Log in

Effect of catecholamines, histamine and oxyfedrine on isotonic contraction and cyclic AMP in the guinea-pig heart

  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Summary

Experiments in isolated, perfused guinea-pig hearts (Langendorff) have shown that

  1. 1.

    Inotropic effects of catecholamines and histamine are potentiated by the PDE-inhibitor theophylline, but antagonized by the PDE-activators imidazole or N-methyl-imidazole.

  2. 2.

    Maximum effective doses of isoprenaline (0.5 μg) or histamine (10 μg) increase cardiac cAMP 4–5-fold at 15 sec after injection whereas maximum effective doses of oxyfedrine (10 μg) produce a 2-fold increase in cAMP at 15 sec, along with a considerably weaker inotropic response than isoprenaline or histamine.

  3. 3.

    Changes in cAMP precede the increase in isotonic contractions brought about by isoprenaline, histamine or oxyfedrine in maximum effective doses, and also clearly precede the decrease in the inotropic effect of isoprenaline or histamine.

  4. 4.

    No dissociation between the increase in cAMP and the positive inotropic effect was observed after very small doses of isoprenaline or histamine which only increased the amplitude of contraction by about 12–14%. A significant correlation (r=0.94, p<0.01) between increases in isotonic contractions and increases in cAMP was found over the whole tested dose range of both compounds.

  5. 5.

    Increases in cAMP as well as in contractions induced by 2 μg of histamine—in contrast to an equieffective dose of 0.1 μg of isoprenaline—were not blocked by the β-blocking compound Kö 592 (50 μg), demonstrating again a close relationship between cAMP and inotropic effect of histamine or isoprenaline.

  6. 6.

    The data support the mediator role of cAMP for the inotropic effect of substances which activate the adenyl cyclase system in the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alonso, D., Rynes, R., Harris, J. B.: Effect of imidazole on active transport by gastric mucosa and urinary bladder. Amer. J. Physiol. 208, 1183–1190 (1965).

    Google Scholar 

  • Angelakos, E. T., Loew, E. R.: Histamine toxicity in mice and rats following treatment with histaminase inhibitors. J. Pharmacol. exp. Ther. 119, 444–451 (1957).

    Google Scholar 

  • Arunlakshana, O., Mongar, J. L., Schild, H. O.: Potentiation of pharmacological effects of histamine by histaminase inhibitors. J. Physiol. (Lond.) 123, 32–54 (1954).

    Google Scholar 

  • Benfey, B. G.: Lack of relationship between myocardial cyclic AMP concentration and inotropic effects of sympathomimetic amines. Brit. J. Pharmacol. 43, 757–763 (1971).

    Google Scholar 

  • Black, J. W., Duncan, A. M., Durant, C. J., Ganellin, C. R., Parsons, E. M.: Definition and antagonism of histamine H2-receptors. Nature (Lond.) 236, 385–390 (1972).

    Google Scholar 

  • Brooker, G.: High pressure anion exchange chromatographic measurement of cyclic adenosine 3′,5′-monophosphate and cyclic [14C]adenosine monophosphate specific activity in myocardium prelabeled with [14C]adenosine. J. biol. Chem. 246, 7810–7816 (1971).

    Google Scholar 

  • Butcher, R. W., Sutherland, E. W.: Adenosine 3′,5′-phosphate in biological materials. I. Purification and properties of cyclic 3′,5′-nucleotide phosphodiesterase and use of this enzyme to characterize adenosine 3′,5′-phosphate in human urine. J. biol. Chem. 237, 1244–1250 (1962).

    Google Scholar 

  • Cheung, W. Y.: Properties of cyclic 3′,5′-nucleotide phosphodiesterase from rat brain. Biochemistry 6, 1079–1087 (1967).

    Google Scholar 

  • Cheung, W. Y., Williamson, J. R.: Kinetics of cyclic adenosine monophosphate changes in rat heart following epinephrine administration. Nature (Lond.) 207, 979 (1965).

    Google Scholar 

  • Coraboeuf, E.: Influence de certaines substances biologiques sur la perméabilité membranaire myocardique. In: Drugs and metabolism of myocardium and striated muscle. Proc. of the International Symposium. Nancy, pp. 305–316. Ed. by M. Lamarche and R. Royer (1969).

  • Dean, P. M.: Investigation into the mode of action of histamine on the isolated rabbit heart. Brit. J. Pharmacol. 32, 65–77 (1968).

    Google Scholar 

  • Drummond, G. I., Duncan, L., Hertzman, E.: Effect of epinephrine on phosphorylase-b-kinase in perfused rat hearts. J. biol. Chem. 241, 5898–5899 (1966).

    Google Scholar 

  • Drummond, G. I., Hemmings, S. J.: Inotropic and chronotropic effects of dibutyryl cyclic AMP. In: Advances in cycle nucleotide research, Vol. 1, Physiology and Pharmacology of cyclic AMP, pp. 307–316. Ed. by P. Greengard, R. Paoletti and G. A. Robison. New York: Raven Press 1972.

    Google Scholar 

  • Drummond, G. I., Hemmings, S. J.: Role of adenylate cyclase-cyclic AMP in cardiac actions of adrenergic amines. (in press, 1973).

  • Gartner, S. L., Vahouny, G. V.: Effects of epinephrine and cyclic 3′,5′-AMP on perfused rat hearts. Amer. J. Physiol. 222, 1121–1124 (1972).

    Google Scholar 

  • Gilman, A. G.: A protein binding assay for adenosine 3′,5′-cyclic monophosphate. Proc. nat. Acad. Sci. (Wash.) 67, 305–312 (1970).

    Google Scholar 

  • Karow, Jr., A. M.: Dimethylsulphoxide effect on myocardial β-adrenoceptors. J. Pharm. Pharmacol. 24, 419–421 (1972).

    Google Scholar 

  • Kjekshus, J. K., Henry, P. D., Sobel, B. E.: Activation of phosphorylase by cyclic AMP without augmentation of contractility in the perfused guinea pig heart. Circulat. Res. 29, 468–478 (1971).

    Google Scholar 

  • Klein, I., Levey, G. S.: Activation of myocardial adenyl cyclase by histamine in guinea pig, cat, and human heart. J. clin. Invest. 50, 1012–1015 (1971).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: The action of imidazole on the effects of methylxanthines and catecholamines on cardiac contraction and phosphorylase activity. J. Pharmacol. exp. Ther. 156, 514–521 (1967a).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Beta-adrenerge Effekte und ihr zeitlicher Verlauf unter Tetrahydropapaverolin und Isoprenalin am Langendorff-Herzen. Naunyn-Schmiedeberg's Arch. Pharmak. exp. Path. 256, 301–309 (1967b).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Erregung adrenerger β-Rezeptoren in den Herzen normaler und reserpinisierter Meerschweinchen durch Oxyfedrin. Arzneimittel-Forsch. (Drug Res.) 19, 1562–1566 (1969).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Effects of oxyfedrine on cardiac performance efficiency and coronary flow with respect to its mode of action. Brux.-Med. 9, 589–597 (1970a).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Cardiostimulatory effects of cyclic 3′,5′-adenosine monophosphate and its acylated derivatives. Naunyn-Schmiedeberg's Arch. Pharmak. 266, 236–254 (1970b).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Cardiostimulatory effects of oxyfedrine, DMPP and sympathomimetics in relation to their 3H-noradrenaline-releasing properties. Naunyn-Schmiedeberg's Arch. Pharmak. 268, 59–70 (1971).

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: Mechanismus der Herzwirkungen des Oxyfedrins. In: Wirkungsweise von Oxyfedrin, pp. 95–106. Edited by E. Gerlach and K. Moser. Stuttgart-New York: Schattauer 1972a.

    Google Scholar 

  • Kukovetz, W. R., Pöch, G.: The positive inotropic effect of cyclic AMP. In: Advances in Cyclic Nucleotide Research, Vol. 1, Physiology and Pharmacology of Cyclic AMP, pp. 261–290. Ed. by P. Greengard, R. Paoletti and G. A. Robison. New York: Raven Press 1972b.

    Google Scholar 

  • Kukovetz, W. R., Pöch, G., Wurm, A.: Effects of isoprenaline, histamine and oxyfedrine on the cyclic AMP content of the heart (Wirkung von Isoprenalin, Histamin und Oxyfedrin auf den Zyklo-AMP-Gehalt des Herzens). Naunyn-Schmiedeberg's Arch. Pharmacol. Suppl. 274, R 70 (1972).

    Google Scholar 

  • LaRaia, P. J., Craig, R. J., Reddy, W. J.: Glucagon: Effect on adenosine 3′,5′-monophosphate in the rat heart. Amer. J. Physiol. 215, 968–970 (1968).

    Google Scholar 

  • McNeill, J. H., Muschek, L. D.: Histamine effects on cardiac contractility, phosphorylase and adenyl cyclase. J. molec. cell. Cardiol. 4, 611–624 (1972).

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H.: Über die positive inotrope Wirkung von Dibutyryl-3′,5′-AMP an isolierten Rattenvorhöfen. Pflügers Arch. 333, 197–212 (1972).

    Google Scholar 

  • Meinertz, T., Nawrath, H., Scholz, H.: Dibutyryl cyclic AMP and adrenaline increase contractile force and 45Ca uptake in mammalian cardiac muscle. Naunyn-Schmiedeberg's Arch. Pharmacol. 277, 107–112 (1973).

    Google Scholar 

  • Nayler, W. G.: Calcium exchange in cardiac muscle. A basic mechanism of drug action. Amer. Heart J. 73, 379–384 (1967).

    Google Scholar 

  • Pöch, G.: Assay of phosphodiesterase with radioactively labeled cyclic 3′,5′-AMP as substrate. Naunyn-Schmiedeberg's Arch. Pharmak. 268, 272–299 (1971).

    Google Scholar 

  • Pöch, G., Kukovetz, W. R.: Drug-induced release and pharmacodynamic effects of histamine in the guinea pig heart. J. Pharmacol. exp. Ther. 156, 522–527 (1967).

    Google Scholar 

  • Pöch, G., Kukovetz, W. R.: Einfluß von Theophyllin und Imidazol auf die Wirkung von Histamin am Meerschweinchenherzen. Naunyn-Schmiedeberg's Arch. Pharmak. exp. Path. 260, 187–188 (1968).

    Google Scholar 

  • Pöch, G., Kukovetz, W. R.: Die Phosphodiesteraseaktivität des Herzens unter Theophyllin, Imidazol und 2-Brom-LSD. In: Coffein und andere Methylxanthine, pp. 109–117. Edited by F. Heim and H. P. T. Ammon. Stuttgart-New York: Schattauer 1969.

    Google Scholar 

  • Pöch, G., Kukovetz, W. R., Scholz, N.: Specific inhibition of the cardiac effects of histamine on contraction and cyclic AMP by burimamide. (In preparation, 1973).

  • Robinson, G. A., Butcher, R. W., Øye, I., Morgan, H. E., Sutherland, E. W.: The effect of epinephrine on adenosine 3′,5′-phosphate levels in the isolated perfused rat heart. Molec. Pharmacol. 1, 168–177 (1965).

    Google Scholar 

  • Shanfeld, J., Frazer, A., Hess, M. E.: Dissociation of the increased formation of cardiac adenosine 3′,5′-monophosphate from the positive inotropic effect of norepinephrine. J. Pharmacol. exp. Ther. 169, 315–320 (1969).

    Google Scholar 

  • Sutherland, E. W., Robison, G. A., Butcher, R. W.: Some aspects of the biological role of adenosine 3′,5′-monophosphate (cyclic AMP). Circulation 37, 279–306 (1968).

    Google Scholar 

  • Tsien, R. W., Giles, W., Greengard, P.: Mediation of the effects of adrenaline on cardiac Purkinje fibres. Nature (New Biol.) 240, 181–183 (1972).

    Google Scholar 

  • Tuttle, R. S., Fatah, A.: The effect of ouabain on the frequency-force relation and on post-stimulation potentiation in isolated atrial and ventricular muscle. J. Pharmacol. exp. Ther. 135, 142–150 (1962).

    Google Scholar 

  • Williamson, J. R.: Kinetic studies of epinephrine effects in the perfused rat heart. Pharmacol. Rev. 18, 205–210 (1966).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by grant Nr. 1301 of the Fonds zur Förderung der wissenschaftlichen Forschung in Österreich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kukovetz, W.R., Pöch, G. & Wurm, A. Effect of catecholamines, histamine and oxyfedrine on isotonic contraction and cyclic AMP in the guinea-pig heart. Naunyn-Schmiedeberg's Arch. Pharmacol. 278, 403–424 (1973). https://doi.org/10.1007/BF00501483

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00501483

Key words

Navigation