Skip to main content
Log in

Thermal effects in compressible viscous flow in a capillary

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The thermal effects for a compressible viscous flow in a capillary have been calculated by solving the equation of energy, where a parabolic profile is assumed for the axial flow velocity. It is shown that, in general, the temperature changes are small (a few millikelvins), consistent with the current assumption of an isothermal flow, except in the case of a critical, i.e., very compressible, fluid where the cooling can be substantial. This effect is demonstrated numerically on the basis of a flow of ethylene in nearly critical circumstances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. R. van den Berg, C. A. ten Seldam, and P. S. van der Gulik, J. Fluid Mech. 246:1 (1993).

    Google Scholar 

  2. R. K. Prud'homme, T. W. Chapman, and J. R. Bowen, Appl. Sci. Res. 43:67 (1986).

    Google Scholar 

  3. H. C. Brinkman, Appl. Sci. Res. A 2:120 (1951).

    Google Scholar 

  4. R. Siegel, E. M. Sparrow, and T. M. Hallman, Appl. Sci. Res. A 7:386 (1958).

    Google Scholar 

  5. H. R. van den Berg, Thesis (University of Amsterdam, Amsterdam, 1977).

    Google Scholar 

  6. H. R. van den Berg, C. A. ten Seldam, and P. S. van der Gulik, Physica 167A:157 (1990).

    Google Scholar 

  7. J. Kestin and K. Pilarczyk, Trans. Am. Soc. Mech. Eng. 76:987 (1954).

    Google Scholar 

  8. J. Kestin and H. E. Wang, Trans. Am. Soc. Mech. Eng. 79:197 (1957).

    Google Scholar 

  9. J. Kestin and W. Leidenfrost, Physica 25:1033 (1959).

    Google Scholar 

  10. G. Guiochon and C. L. Guillemin, Quantitative Gas Chromatography, Journal of Chromatography Library, Vol. 42 (Elsevier Science, Amsterdam, 1988).

    Google Scholar 

  11. W. M. Madigosky, J. Chem. Phys. 46:4441 (1967).

    Google Scholar 

  12. S. M. Karim and L. Rosenhead, Rev. Mod. Phys. 24:108 (1952).

    Google Scholar 

  13. H. L. Langhaar, J. Appl. Mech. 9 Trans. Am. Soc. Mech. Eng. 64:A-55 (1942).

    Google Scholar 

  14. R. W. Hornbeck, Appl. Sci. Res. A 13:224 (1964).

    Google Scholar 

  15. P. M. Holland, B. E. Eaton, and H. J. M. Hanley, J. Phys. Chem. Ref. Data 12:917 (1983).

    Google Scholar 

  16. R. T. Jacobsen, M. Jahangiri, R. B. Stewart, R. D. McCarty, J. M. H. Levelt Sengers, H. J. White, J. V. Sengers, and G. A. Olchowy, Ethylene (Ethene), International Thermodynamic Tables of the Fluid State, Vol. 10 (Blackwell Scientific, Oxford, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Paper dedicated to Professor Joseph Kestin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, H.R., ten Seldam, C.A. & van der Gulik, P.S. Thermal effects in compressible viscous flow in a capillary. Int J Thermophys 14, 865–892 (1993). https://doi.org/10.1007/BF00502113

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502113

Key Words

Navigation