Skip to main content
Log in

Electrophoretic analysis of genetic linkage in Scots pine (Pinus sylvestris L.)

  • Published:
Biochemical Genetics Aims and scope Submit manuscript

Abstract

Eighty megagametaphytes from each of 24 Scots pines (Pinus sylvestris L.) were subjected to horizontal starch gel electrophoresis. The trees were from crosses among widely separated provenances, and each was polymorphic for 8 to 14 loci. Evidence for linkage among 275 two-locus combinations was tested using chi-square analysis. Data from different trees were pooled to calculate map distances for the species. Nineteen of the twenty-nine loci tested were linked in one of six groups; the groups varied in size from two to seven loci. Similarities in linkage relationships among Scots pine, other pines, and other species within the Pinaceae support karyological research that suggests extensive conservation of the conifer genome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beckmann, J. S., and Soller, M. (1983). Restriction fragment length polymorphisms in genetic improvement: Methodologies, mapping and costs. Theor. Appl. Genet. 6735.

    Google Scholar 

  • Botstein, D., White, R. L., Skolnick, M., and Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32314.

    Google Scholar 

  • Clayton, J. W., and Tretiak, D. N. (1972). Amine-citrate buffers for pH control in starch gel electrophoresis. J. Fish. Res. Bd. Can. 291169.

    Google Scholar 

  • Conkle, M. T. (1981). Isozyme variation and linkage in six conifer species. In Proceedings of a Symposium on Isozymes of North American Forest Trees and Forest Insects Berkeley, Calif., Gen. Tech. Rep. PSW-48, Pac. S.W. For. Range Expt. Stn., Forest Service, USDA, Berkeley, Calif., pp. 11–17.

    Google Scholar 

  • Conkle, M. T., Hodgskiss, P. D., Nunnally, L. B., and Hunter, S. C. (1982). Starch Gel Electrophoresis of Conifer Seeds: A Laboratory Manual Gen. Tech. Rep. PSW-64, Pac. S.W. For. Range Expt. Stn., Forest Service, USDA, Berkeley, Calif.

    Google Scholar 

  • Critchfield, W. B. (1975). Interspecific hybridization in Pinus: A summary review. In Fowler, D. P., and Yeatman, C. W. (eds.), Proceedings of a Symposium on Interspecific and Interprovenance Hybridization in Forest Trees, Proc. 14th Can. Tree Improv. Assoc., Part 2, pp. 99–105.

  • Eckert, R. T., Joly, R. J., and Neale, D. B. (1981). Genetics of isozyme variants and linkage relationships among allozyme loci in 35 eastern white pine clones. Can. J. For. Res. 11573.

    Google Scholar 

  • El-Kassaby, Y., Sziklai, O., and Yeh, F. C. (1982). Linkage relationships among 19 polymorphic allozyme loci in coastal Douglas-fir (Pseudotsuga menziesii var. menziesii). Can. J. Genet. Cytol. 24101.

    Google Scholar 

  • Guries, R. P., Friedman, S. T., and Ledig, F. T. (1978). A megagametophyte analysis of genetic linkage in pitch pine (Pinus rigida Mill.). Heredity 40(2):309.

    Google Scholar 

  • Harris, H., and Hopkinson, D. A. (1976). Handbook of Enzyme Electrophoresis in Human Genetics American Elsevier, New York.

    Google Scholar 

  • Karki, L. (1983). Forest tree breeding combines the highest timber quality and the highest stem wood production per hectare. Mctsanjalostussaatio, Rep. Found. For. Tree Breed, Helsinki, Finland.

    Google Scholar 

  • Karrfalt, R. P., Gerhold, H. D., and Palpant, E. H. (1975). Inter-racial hybridization in Scotch pine: Geographic flowering patterns and crossability. Silv. Genet. 24107.

    Google Scholar 

  • King, J. N., and Dancik, B. P. (1983). Inheritance and linkage of isozymes in white spruce (Picea glauca). Can J. Genet. Cytol. 25430.

    Google Scholar 

  • Kinloch, B. B., Parks, G. K., and Fowler, C. W. (1970). White pine blister rust: Simply inherited resistance in sugar pine. Science 167193.

    Google Scholar 

  • Kosambi, D. D. (1944). The estimation of map distance from recombination values. Ann. Eugen. (London) 12172.

    Google Scholar 

  • Lewontin, R. C. (1971). The effect of genetic linkage on the mean fitness of a population. Proc. Natl. Acad. Sci. USA 68984.

    Google Scholar 

  • Lewontin, R. C. (1974). The Genetic Basis of Evolutionary Change Columbia University Press, New York and London.

    Google Scholar 

  • Lundkvist, K. (1979). Allozyme frequency distribution in four Swedish populations of Norway spruce (Picea abies K.). I. Estimations of genetic variation within and among populations, genetic linkage and a mating system parameter. Hereditas 90127.

    Google Scholar 

  • Markert, C. L., and Faulhaber, I. (1965). Lactate dehydrogenase patterns of fish. J. Exp. Zool. 159319.

    Google Scholar 

  • Mather, K. (1951). The Measurement of Linkage in Heredity John Wiley and Sons, New York.

    Google Scholar 

  • May, B., Stoneking, M., and Wright, J. E. (1979). Joint segregation of malate dehydrogenase and diaphorase loci in brown trout (Salmo trutta). Trans. Am. Fish. Soc. 108373.

    Google Scholar 

  • Miller, C. N. (1976). Early evolution in the Pinaceae. Rev. Palaebot. Palyn. 21101.

    Google Scholar 

  • Neale, D. B., and Adams, W. T. (1981). Inheritance of isozyme variants in seed tissues of balsam fir (Abies balsamea). Can. J. Bot. 591285.

    Google Scholar 

  • O'Malley, D. M., Allendorf, F. W., and Blake, G. M. (1979). Inheritance of isozyme variation and heterozygosity of Pinus ponderosa. Biochem. Genet. 17233.

    Google Scholar 

  • Owen, A. R. G. (1950). The theory of genetical recombination. Adv. Genet. 3117.

    Google Scholar 

  • Pederick, L. A. (1968). Chromosome inversions in Pinus radiata. Silv. Genet. 1722.

    Google Scholar 

  • Rick, C. M., and Fobes, J. M. (1974). Association of an allozyme with nematode resistance. Rep. Tomato Genet. Coop. No. 24:25.

  • Ridgway, G. J., Sherburne, S. W., and Lewis, R. D. (1970). Polymorphism in the esterases of Atlantic herring. Trans. Am. Fish. Soc. 99(1):147.

    Google Scholar 

  • Rudin, D., and Ekberg, I. (1978). Linkage studies in Pinus sylvestris L.—using macro gametophyte allozymes. Silv. Genet. 271.

    Google Scholar 

  • Runquist, E. W. (1968). Meiotic investigations in Pinus sylvestris. Hereditas 6077.

    Google Scholar 

  • Sax, K., and Sax, H. J. (1933). Chromosome number and morphology in the conifers. J. Arnold. Arbor. 14356.

    Google Scholar 

  • Saylor, L. C. (1983). Karyotype analysis of the genus Pinus—subgenus Strobus. Silv. Genet. 32119.

    Google Scholar 

  • Saylor, L. C., and Smith, B. W. (1966). Meiotic irregularity in species and interspecific hybrids of Pinus. Am. J. Bot. 53(5):453.

    Google Scholar 

  • Sederoff, R. R., and Ledig, F. T. (1985). Increasing forest productivity and value through biotechnology. In Weyerhaeuser Science Symposium Vol. 4, Proceedings of a Symposium on Forest Potentials, Tacoma, Wash., pp. 253–276.

  • Strauss, S. H., and Conkle, M. T. (1986). Segregation, linkage, and diversity of allozymes in knobcone pine. Theor. Appl. Genet. 72483.

    Google Scholar 

  • Szmidt, A. E., Muona, O., and Yazdani, R. (1984). Linkage relationships in Scots pine (Pinus sylvestris L.). In Genetic Studies of Scots Pine (Pinus sylvestris L.) Domestication by Means of Isozyme Analysis, Swedish Univ. Agr. Sci., Umea, Sweden, Rep. 1.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This is Paper No. 7533 in the Journal Series of the Pennsylvania Agricultural Experiment Station. This research was supported by funds from USDA Regional Research Project NE-27 while the senior author was a Master of Science candidate at Pennsylvania State University.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niebling, C.R., Johnson, K. & Gerhold, H.D. Electrophoretic analysis of genetic linkage in Scots pine (Pinus sylvestris L.). Biochem Genet 25, 803–814 (1987). https://doi.org/10.1007/BF00502600

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00502600

Key words

Navigation