Skip to main content
Log in

The initial density dependence of transport properties: Noble gases

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The usual procedure that the transport properties at atmospheric pressure are identified with values in the limit of zero density cannot be accepted for all reduced temperatures T *. It is shown in the framework of the Rainwater-Friend theory for noble gases, as a good example, that for T *<1 the effect of the initial density dependence has different signs for viscosity and thermal conductivity and amounts to a few percent, when data at atmospheric pressure are compared with zero-density values. An improved representation of the monomer-dimer contribution to the second transport virial coefficients of the Rainwater-Friend theory is presented in the paper. This is based, among others, on the author's own experimental data of the initial density dependence of viscosity of polytomic gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kestin, S. T. Ro, and W. A. Wakeham, Physica 58:165 (1972).

    Google Scholar 

  2. G. C. Maitland, M. Rigby, E. B. Smith, and W. A. Wakeham, Intermolecular Forces: Their Origin and Determination (Clarendon, Oxford, 1987).

    Google Scholar 

  3. B. Najafi, E. A. Mason, and J. Kestin, Physica 119A:387 (1983).

    Google Scholar 

  4. E. Bich, J. Millat, and E. Vogel, Wiss. Z. W.-Pieck-Univ. Rostock 36(N8):5 (1987).

    Google Scholar 

  5. A. Boushehri, J. Bzowski, J. Kestin, and E. A. Mason, J. Phys. Chem. Ref. Data 16:445 (1987).

    Google Scholar 

  6. J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1964).

    Google Scholar 

  7. J. C. Rainwater, J. Chem. Phys. 81:495 (1984).

    Google Scholar 

  8. D. G. Friend and J. C. Rainwater, Chem. Phys. Lett. 107:590 (1984).

    Google Scholar 

  9. J. C. Rainwater and D. G. Friend, Phys. Rev. A36:4062 (1987).

    Google Scholar 

  10. D. Enskog, Kgl. Svenska Ventensk. Handl. 63:No. 4 (1922).

    Google Scholar 

  11. D. K. Hoffman and C. F. Curtiss, Phys. Fluids 8:890 (1965).

    Google Scholar 

  12. D. G. Friend, J. Chem. Phys. 79:4553 (1983).

    Google Scholar 

  13. D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31:1545 (1959).

    Google Scholar 

  14. D. E. Stogryn and J. O. Hirschfelder, J. Chem. Phys. 31:1531 (1959).

    Google Scholar 

  15. E. A. Mason and L. Monchick, J. Chem. Phys. 36:1622 (1962).

    Google Scholar 

  16. L. Monchick, A. N. G. Pereira, and E. A. Mason, J. Chem. Phys. 42:3241 (1965).

    Google Scholar 

  17. L. A. Viehland, E. A. Mason, and S. I. Sandler, J. Chem. Phys. 68:5277 (1978).

    Google Scholar 

  18. J. Millat, V. Vesovic, and W. A. Wakeham, Int. J. Thermophys. 10:805 (1989).

    Google Scholar 

  19. H. J. M. Hanley, R. D. McCarty, and J. V. Sengers, J. Chem. Phys. 50:857 (1969).

    Google Scholar 

  20. R. A. Aziz, F. R. W. McCourt, and C. C. K. Wong, Mol. Phys. 61:1487 (1987).

    Google Scholar 

  21. R. A. Aziz and M. J. Slaman, Chem. Phys. 130:187 (1989).

    Google Scholar 

  22. R. A. Aziz and M. J. Slaman, Mol. Phys. 58:679 (1986).

    Google Scholar 

  23. R. A. Aziz and M. J. Slaman, Mol. Phys. 57:825 (1986).

    Google Scholar 

  24. A. A. Clifford, P. Gray, and N. Platts, J. Chem. Soc. Faraday Trans. I 73:381 (1977).

    Google Scholar 

  25. F. M. Mourits and F. H. A. Rummens, Can. J. Chem. 55:3007 (1977).

    Google Scholar 

  26. T. Strehlow and E. Vogel, Physica 161A:101 (1989).

    Google Scholar 

  27. E. Vogel, B. Holdt, and T. Strehlow, Physica 148A:46 (1988).

    Google Scholar 

  28. E. Vogel and T. Strehlow, Z. Phys. Chem. Leipzig 269:897 (1988).

    Google Scholar 

  29. E. Vogel, E. Bich, and R. Nimz, Physica 139A:188 (1986).

    Google Scholar 

  30. J. Kestin, E. Paykoc, and J. V. Sengers, Physica 54:1 (1971).

    Google Scholar 

  31. J. A. Gracki, G. P. Flynn, and J. Ross, J. Chem. Phys. 51:3856 (1969).

    Google Scholar 

  32. G. P. Flynn, R. V. Hanks, N. A. Lemaire, and J. Ross, J. Chem. Phys. 38:154 (1963).

    Google Scholar 

  33. N. J. Trappeniers, A. Botzen, H. R., van den Berg, and J. van Oosten, Physica 30:985 (1964).

    Google Scholar 

  34. J. Kestin, Ö. Korfali, J. V. Sengers, and B. Kamgar-Parsi, Physica 106A:415 (1981).

    Google Scholar 

  35. H. R. van den Berg and N. J. Trappeniers, Chem. Phys. Lett. 58:12 (1978).

    Google Scholar 

  36. J. Kestin and W. Leidenfrost, Physica 25:1033 (1959).

    Google Scholar 

  37. J. Kestin, Ö. Korfali, and J. V. Sengers, Physica 100A:335 (1980).

    Google Scholar 

  38. H. Iwasaki and M. Takahashi, J. Chem. Phys. 74:1930 (1981).

    Google Scholar 

  39. H. Iwasaki and M. Takahashi, Proc. 4th Int. Conf. High Press. (1974), p. 523.

  40. J. Kestin, R. Paul, A. A. Clifford, and W. A. Wakeham, Physica 100A:349 (1980).

    Google Scholar 

  41. M. Mustafa, M. Ross, R. D. Trengove, W. A. Wakeham, and M. Zalaf, Physica 141A:233 (1987).

    Google Scholar 

  42. A. I. Johns, A. C. Scott, J. T. R. Watson, D. Ferguson, and A. A. Clifford, Phil. Trans. Roy. Soc. Lond. 325:295 (1988).

    Google Scholar 

  43. H. M. Roder, NBS, private communication, cited in Ref. 21.

  44. A. Acton and K. Kellner, Physica 90B:192 (1977).

    Google Scholar 

  45. J. Millt M. Ross, W. A. Wakeham, and M. Zalaf, Physica 148A:124 (1988).

    Google Scholar 

  46. U. V. Mardolcar, C. A. Nieto de Castro, and W. A. Wakeham, Int. J. Thermophys. 7:259 (1986).

    Google Scholar 

  47. A. I. Johns, S. Rashid, J. T. R. Watson, and A. A. Clifford, J. Chem. Soc. Faraday Trans. I 82:2235 (1986).

    Google Scholar 

  48. J. Millat, M. Mustafa, M. Ross, W. A. Wakeham, and M. Zalaf, Physica 145A:461 (1987).

    Google Scholar 

  49. J. Millat, M. J. Ross, and W. A. Wakeham, Physica 159A:28 (1989).

    Google Scholar 

  50. F. G. Keyes, Trans. Am. Soc. Mech. Eng. 77:1395 (1955).

    Google Scholar 

  51. M. J. Assael, M. Dix, A. Lucas, and W. A. Wakeham, J. Chem. Soc. Faraday Trans. I 77:439 (1981).

    Google Scholar 

  52. J. de Boer, Physica 10:348 (1943).

    Google Scholar 

  53. Ref. 6. 674.

    Google Scholar 

  54. E. Bich, J. Millat, and E. Vogel, (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bich, E., Vogel, E. The initial density dependence of transport properties: Noble gases. Int J Thermophys 12, 27–42 (1991). https://doi.org/10.1007/BF00506120

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00506120

Key words

Navigation