Skip to main content
Log in

Hydrogen bonding: A molecular orbital treatment by the EHT and the CNDO/2 methods of methanol and of formic acid

  • Relationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

By both the EHT and the CNDO/2 calculations, the linear dimer of methanol is found to be more stable than the cyclic dimer. The hydrogen bonds in the trimer are stronger than those in linear dimers. The proton potential function, charge densities, and overlap populations in the linear dimer of methanol have been obtained. The CNDO/2 calculations show that the cis-form of formic acid is more stable than the trans-form, in agreement with experimental data. The cyclic dimer of formic acid is more stable than the open dimer. The β-form of formic acid trimer is more stable than the α-form. The proton potential function and the charge densities in the cyclic dimer of formic acid have been obtained. The CNDO/2 method gives more realistic proton potential functions for the dimers of methanol and formic acid. The O ... O stretching force constant in the dimers of methanol and formic acid have been estimated to be 0.13 × 105 dynes/cm and 0.27 × 105 dynes/cm, respectively, in agreement with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Pimentel, G. C., and A. L. McClellan: The hydrogen bond. San Francisco: W. H. Freeman 1960.

    Google Scholar 

  2. Murthy, A. S. N., and C. N. R. Rao: Appl. Spectroscopy Revs. 2, 69 (1968).

    Google Scholar 

  3. Coulson, C. A.: In: Hydrogen bonding. Ed. by D. Hadzi. London: Pergamon Press 1959.

    Google Scholar 

  4. Bratoz, S.: In: Advances in quantum chemistry, Vol. 3. Ed. by P. O. Löwdin. London: Academic Press 1967.

    Google Scholar 

  5. Rein, R., and F. E. Harris: J. chem. Physics 41, 3393 (1964); 42, 2177 (1965); 43, 4415 (1965); 45, 1797 (1966).

    Google Scholar 

  6. Sabin, J. R.: Intern. J. quantum Chem. 2, 23, 31 (1968).

    Google Scholar 

  7. Morokuma, K., H. Kato, T. Yonezawa, and K. Fukui: Bull. chem. Soc. Japan 38, 1263 (1965).

    Google Scholar 

  8. Adam, W., A. Grimison, R. Hoffmann, and C. Z. de Ortiz: J. Amer. chem. Soc. 90, 1509 (1968).

    Google Scholar 

  9. Clarke, G. A., R. Rein, and F. E. Harris: Abstract S 023,155 th National ACS meeting, San Francisco, April 1968.

  10. Hoffmann, R.: J. chem. Physics 39, 1397 (1963).

    Google Scholar 

  11. Pople, J. A., D. P. Santry, and G. A. Segal: J. chem. Physics 43, S 129 (1965); - Pople, J. A., and G. A. Segal: J. chem. Physics 43, S 136 (1965); 44, 3289 (1966).

    Google Scholar 

  12. Davis, J. C., K. S. Pitzer, and C. N. R. Rao: J. physic. Chem. 64, 1714 (1960).

    Google Scholar 

  13. Bellamy, L. J., and R. J. Pace: Spectrochim. Acta 22, 525 (1966).

    Google Scholar 

  14. Jakobsen, R. J., Y. Mikawa, and J. W. Brasch: Spectrochim. Acta 23 A, 2199 (1967).- Mikawa, Y., R. J. Jakobsen, and J. W. Brasch. J. chem. Physics 45, 4750 (1966).

    Google Scholar 

  15. Wolfsberg, M., and L. Helmholz: J. chem. Physics 20, 837 (1952).

    Google Scholar 

  16. Hoffmann, R.: Quantum Chemistry Program Exchange (QCPE 30), Bloomington, Indiana.

  17. Segal, G. A.: Quantum Chemistry Program Exchange (QCPE 91), Bloomington, Indiana.

  18. Kimura, K., and M. Kubo: J. chem. Physics 30, 151 (1959).

    Google Scholar 

  19. Lake, R. F., and H. W. Thompson: Proc. Roy. Soc. (London) A 291, 469 (1966).

    Google Scholar 

  20. Miyazawa, T., and K. S. Pitzer: J. chem. Physics 30, 1076 (1959).

    Google Scholar 

  21. Karle, J., and L. O. Brockway: J. Amer. chem. Soc. 66, 574 (1944).

    Google Scholar 

  22. Waldstein, P., and L. A. Blatz: J. physic. Chem. 71, 2271 (1967).

    Google Scholar 

  23. Stanevich, A. E.: Optics and Spectroscopy 16, 539 (1964).

    Google Scholar 

  24. Ocvirk, A., A. Ažman, and D. Hadži: Theoret. chim. Acta (Berl.) 10, 187 (1968).

    Google Scholar 

  25. Holtzberg, F., B. Post, and I. Fankuchen: Acta crystallogr. 6, 127 (1953).

    Google Scholar 

  26. Pullman, A., and H. Berthod: Theoret. chim. Acta (Berl.) 10, 461 (1968).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Murthy, A.S.N., Davis, R.E. & Rao, C.N.R. Hydrogen bonding: A molecular orbital treatment by the EHT and the CNDO/2 methods of methanol and of formic acid. Theoret. Chim. Acta 13, 81–90 (1969). https://doi.org/10.1007/BF00527322

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00527322

Keywords

Navigation