Skip to main content
Log in

Study of reaction mechanisms by semiempirical methods I

Optimization of the geometry of the molecule in the framework of a single calculation of the energy function

  • Commentationes
  • Published:
Theoretica chimica acta Aims and scope Submit manuscript

Abstract

The author suggests a procedure offering the possibility to determine, with the use of a double iteration technique, the equilibrium geometry within the framework of a single calculation of the energy function. The method is used for the ground state and the lowest excited singlet state of formaldehyde and for the formyl radical. The individual contributions of the potential energy are discussed in brief.

Zusammenfassung

Der Autor schlÄgt ein Verfahren vor, das erlaubt, mittels einer Doppeliterationstechnik die Gleichgewichtsgeometrie im Laufe einer einzigen Berechnung der Energiefunktion zu bestimmen. Das Verfahren wird auf den Grund- und den ersten angeregten Zustand von Formaldehyd und auf das Formylradikal angewendet. Die einzelnen BeitrÄge zur potentiellen Energie werden kurz diskutiert.

Résumé

L'auteur propose une méthode par laquelle il est possible de déterminer par une technique iterative double la géométrie d'équilibre dans le cadre d'un seul calcul de la fonction énergétique. On a appliqué la méthode pour l'état fondamental et l'état excité le plus bas singulet de formaldehyde et pour HCO. On discute brevement les contributions singulaires de l'énergie potentielle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hoffmann,R.: J. chem. Physics 39, 1397 (1963).

    Google Scholar 

  2. Pople,J.A., Santry,D.P., Segal,G.A.: J. chem. Physics 43, S129, S136 (1965).

    Google Scholar 

  3. Pople,J.A., Beveridge,D.L., Dobosh,P.A.: J. chem. Physics 47, 2026 (1967).

    Google Scholar 

  4. Pople,J.A., Segal,G.A.: J. chem. Physics 44, 3289 (1966).

    Google Scholar 

  5. Dewar,M.J.S., Haselbach,E.: J. Amer. chem. Soc. 92, 590 (1970).

    Google Scholar 

  6. Segal,G. A.: J. chem. Physics 47, 1876 (1967).

    Google Scholar 

  7. Gordon,M.S., Pople,J.A.: J. chem. Physics 49, 4643 (1968).

    Google Scholar 

  8. McIver,J.W., Jr., Komornicki,A.: Chem. Physics Letters 10, 303 (1971).

    Google Scholar 

  9. Klopman,G., O'Leary,B.: Fortschr. chem. Forschung 15, 445 (1970).

    Google Scholar 

  10. čársky,P.: Chem. Listy 66, 910 (1972).

    Google Scholar 

  11. Ellison,F.O., Matheu,F.M.: Chem. Physics Letters 10, 322 (1971).

    Google Scholar 

  12. Longuet-Higgins,H.C., Pople,J.A.: Proc. physic. Soc. (London) A68, 591 (1955).

    Google Scholar 

  13. Davidon, W.C.: A.E.C. Res. Develop. Rep., ANL 5990 (1959).

  14. Murtagh,B.A., Sargent,R.W.H.: Computer J. 13, 185 (1970).

    Google Scholar 

  15. Gerratt,J., Mills,I.M.: J. chem. Physics 49, 1730 (1968).

    Google Scholar 

  16. Tokagi,K., Oka,T.: J. physic. Soc. Japan 18, 1174 (1963).

    Google Scholar 

  17. Pedersen,L.: J. molecular Structure 5, 21 (1970).

    Google Scholar 

  18. Brand, J.C.D.: J. chem. Soc. 1946, 858.

  19. Kroto,H.W., Santry,D.P.: J. chem. Physics 47, 792 (1967).

    Google Scholar 

  20. Freeman,D.E., Lombardi,J.R., Klemperer,W.: J. chem. Physics 45, 58 (1966).

    Google Scholar 

  21. Kroto,H.W., Santry,D.P.: J. chem. Physics 47, 2756 (1967).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

PancíŘ, J. Study of reaction mechanisms by semiempirical methods I. Theoret. Chim. Acta 29, 21–28 (1973). https://doi.org/10.1007/BF00528164

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00528164

Keywords

Navigation