Skip to main content
Log in

A variational solution of the Rayleigh problem for a power law non-Newtonian conducting fluid

  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

An investigation is made of the magnetic Rayleigh problem where a semi-infinite plate is given an impulsive motion and thereafter moves with constant velocity in a non-Newtonian power law fluid of infinite extent. The nonstationary flow of this electrically conducting fluid in a transverse magnetic field is then analyzed.

The solution to this highly non-linear problem is obtained by means of a new variational principle developed by the authors. This new principle allows one to obtain the solution in a straightforward manner. Unlike other variational techniques in dissipative physics the authors' possesses a pure Hamiltonian structure and obeys all the laws of the classical variational calculus.

It is shown that the influence of the magnetic field is greater on the coefficient of friction of dilatant fluids than pseudo-plastic fluids. In the absence of a magnetic field the thickness of the boundary layer increases with increasing powers of the fluid. Finally, the shape of the velocity profile is more strongly dependent on the magnetic field strength for pseudo-plastic fluids than for dilatant fluids.

Übersicht

Es wird das folgende Rayleigh-Problem untersucht: eine einseitig unendliche Platte wird stoßartig in Bewegung gesetzt und bewegt sich anschließend mit konstanter Geschwindigkeit in einer unendlich ausgedehnten Flüssigkeit, die einem nicht-Newtonschen Potenzgesetz gehorcht. Die instationäre Strömung dieser elektrisch leitenden Flüssigkeit in einem magnetischen Querfeld wird untersucht. Die Lösung des hochgradig nichtlinearen Problems geschieht durch ein von den Autoren entwickeltes neues Variationsprinzip, das die Lösung auf direktem Wege abzuleiten gestattet. Zum Unterschied von anderen Variationsverfahren, die in der Physik dissipativer Medien verwendet werden, hat das Verfahren der Verfasser eine rein Hamiltonsche Struktur und genügt allen Bedingungen der klassischen Variationsrechnung.

Es wird gezeigt, daß der Einfluß des Magnetfeldes auf den Reibungskoeffizienten bei dilatanten Fluiden größer als bei pseudoplastischen Fluiden ist. Bei Abwesenheit eines Magnetfeldes wächst die Grenzschichtdicke mit dem Potenzexponenten der Fluid-Stoffgleichung. Schließlich hängt die Form des Geschwindigkeitsprofils für pseudo-plastische Fluide stärker vom Magnetfeld ab als dies bei dilatanten Fluiden der Fall ist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sarpkaya, T.: Flow of non-Newtonian Fluids in a Magnetic Field. AIChE J. 7 (1961) pp. 324–328.

    Google Scholar 

  2. Martinson, L. K.; Pavlov, K. B.: Plane Laminar Flow of Non-Newtonian Fluids in Transverse Magnetic Fields. Magnetohydrodynamics 1965, No. 4 (in Russian).

  3. Martinson, L. K.; Pavlov, K. B.: Magnetohydrodynamics Rotation of Electroconductive Viscoplastic Fluids in a Circular Channel. Magnetohydrodynamics 1966, No. 2 (in Russian).

  4. Makarov, M.; Martinson, L. K.; Pavlov, K. B.: Magnetohydrodynamics of Couette Flow of Viscoplastic Continua. Magnetohydrodynamics 1966, No. 4 (in Russian).

  5. Sapunkov, Ya. G.: Similarity Solution of Boundary Layer of Non-Newtonian Fluids in Magnetohydrodynamics. Izvestia, Acad. Sci. U.S.S.R. M.Z.G., 1967, No. 6 (in Russian).

  6. Sapunkov, Ya. G.: Rayleigh Problem of Non-Newtonian Electroconductive Fluids. J. Appl. Math. Tech. Physics 1970, No. 2, pp. 50–55 (in Russian).

    Google Scholar 

  7. Martinson, L. K.; Pavlov, K. B.: Magneto-Plastic Effect in Non-Newtonian Fluids. Magnetohydrodynamics 1966, No. 3 (in Russian).

  8. Vujanovic, B.: An Approach to Linear and Nonlinear Heat Transfer Problem Using a Lagrangian. J. AIAA 9 (1971) PP. 131–134.

    Google Scholar 

  9. Vujanovic, B.; Strauss, A. M.: Nonlinear Heat Transfer via a Variational Principle. J. AIAA 9 (1971) PP. 327–330.

    Google Scholar 

  10. Djukić, Dj.; Vujanovic, B.: On a New Variational Principle of Hamiltonian Type for Classical Field Theory. Z. Angew. Math. Mech. 51 (1971) pp. 611–616.

    Google Scholar 

  11. Vujanovic, B.; Djukić, Dj.: A Variational Principle for the Theory of Laminar Boundary Layers in Incompressible Fluids. Publ. Inst. Math. 11 (1971) pp. 73–83.

    Google Scholar 

  12. Lord Rayleigh: Phil. Mag. 21 (1911) Nr. 6, pp. 697–711.

    Google Scholar 

  13. Schowalter, W. R.: The Application of Boundary-Layer Theory to Power-Law Pseudoplastic Fluids: Similar Solutions. AIChE J. 6 (1960) pp. 24–28.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vujanovic, B., Strauss, A.M. & Djukić, D. A variational solution of the Rayleigh problem for a power law non-Newtonian conducting fluid. Ing. arch 41, 381–386 (1972). https://doi.org/10.1007/BF00533141

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00533141

Keywords

Navigation