Skip to main content
Log in

Nonlinearities on the pressure pulse propagation through a straight elastic tube

Nichtlinearitäten bei der Ausbreitung von Druckschwankungen durch ein gerades, elastisches Rohr

  • Originals
  • Published:
Ingenieur-Archiv Aims and scope Submit manuscript

Summary

The present paper describes a nonlinear mathematical model for the pressure-pulse transmission through an elastic straight tube with circular cross-section. The distortion of a sinusoidal pressure pulse in dimensionless form depends on two parameters, the Strouhal number and the Euler number. The analysis is useful to the correction of the errors which enter in the measurement of the dynamic pressure when long elastic tubes connecting the point of measurement and the pressure transducer are used.

Übersicht

Ausgehend von den Grundgleichungen der instationären Stromfadentheorie wird die Ausbreitung sinusförmiger Druckpulse in einem geraden Rohr mit Kreisquerschnitt und elastischen Wänden berechnet. Die Verzerrung der Druckpulse hängt in dimensionsloser Form von den Parametern Euler- und Strouhal-Zahl ab. Die Resultate der vorliegenden Arbeit dienen der Korrektur des gemessenen instationären Druckes, wenn der Meßort und die Druckmeßdose mit einem elastischen Schlauch verbunden sind.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Joukowski, N.: Water hammer. Proc. Am. Water Works Assoc. 24 (1904) 341–424

    Google Scholar 

  2. Allievi, L.: Theory of water hammer. (See: Symposium on Water Hammer) Trans. ASME 59 (1937) 707–713

    Google Scholar 

  3. D'Souza, A. F.; Oldenburger, R.: Dynamic response of fluid lines. J. Basic Eng. 86 (1964) 589–598

    Google Scholar 

  4. Brown, F. T.; Nelson, S. E.: Step responses of liquid lines with frequency-dependent effects of viscosity. J. Basic Eng. 87 (1965) 504–510

    Google Scholar 

  5. Holmboe, E. L.; Rouleau, W. T.: The effect of viscous shear on transients in liquid lines. J. Basic Eng. 89 (1967) 174–180

    Google Scholar 

  6. Zielke, W.: Frequency-dependent friction in transient pipe flow. J. Basic Eng. 90 (1968) 109–115

    Google Scholar 

  7. Brown, F. T.: A quasi method of characteristics with application to fluid lines with frequency dependent wall shear and heat transfer. J. Basic Eng. 91 (1969) 217–227

    Google Scholar 

  8. Karam, J. T. Jr.: A simple but complete solution for the step response of semi-infinite, circular fluid transmission line. J. Basic Eng. 94 (1972) 455–456

    Google Scholar 

  9. Goodson, R. E.; Leonard, R. G.: A survey of modelling techniques for fluid line transients. J. Basic Eng. 94 (1972) 474–482

    Google Scholar 

  10. Karam, J. T. Jr.; Leonard, R. G.: Simple yet theoretically based, time domain model for fluid transmission line systems. J. Fluids Eng. 95 (1973) 498–504

    Google Scholar 

  11. Trikha, A. K.: An efficient method for simulating frequency-dependent friction in transient liquid flow. J. Fluids Eng. 97 (1975) 97–105

    Google Scholar 

  12. Hök, B.: Dynamic calibration of manometer systems. Med. Biol. Eng. 14 (1976) 193–198

    Google Scholar 

  13. Gabe, I. T.: Pressure measurement in experimental physiology. In: Bergel, D. H. (ed.): Cardiovascular fluid dynamics, Vol. 1, pp. 11–50. London: Academic Press 1972

    Google Scholar 

  14. Surry, D.; Stathopoulos, T.: An experimenttal approach to the economical measurement of spatially averaged wind loads. J. Ind. Aerodyn. 2 (1977/1978) 385–397

    Google Scholar 

  15. Carolus, Th.; Felsch, K. O.: Beeinflussung eines zeitlich periodischen Drucksignals durch Verbindungsleitungen vom Meßort zur Druckmeßdose. GAMM-Congress, April 1–4, 1985, Dubrovnik, Yugoslavia

  16. Anliker, M.; Rochwell, R. L.; Ogden, E.: Nonlinear analysis of flow pulses and shock waves in arteries, Part 1 and 2. Z. Angew. Math. Phys. 22 (1971) 217–246, 563–581

    Google Scholar 

  17. Teipel, I.: Nichtlineare Wellenausbreitungsvorgänge in elastischen Leitungen. Acta Mech. 16 (1973) 93–106

    Google Scholar 

  18. Skalak, R.: Synthesis of a complete circulation. In: Bergel, D. H. (ed.): Cardiovascular fluid dynamics, Vol. 2, pp. 341–376. London: Academic Press 1972

    Google Scholar 

  19. Timoshenko, S. P.; Goodier, J. N.: Theory of elasticity, 3rd ed., p. 70. New York: McGraw-Hill 1983

    Google Scholar 

  20. Ames, W. F.: Numerical methods for partial differential equations, 2nd ed. New York, San Francisco: Academic Press 1977

    Google Scholar 

  21. Courant, R.; Isaacson, E.; Rees, M.: On the solution of nonlinear hyperbolic differential equations by finite differences. Pure Appl. Math. 5 (1952) 243–255

    Google Scholar 

  22. Chow, Chuen-Yen: An Introduction to computational fluid mechanics. New York: Wiley 1979

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsangaris, S., Kozis, L. Nonlinearities on the pressure pulse propagation through a straight elastic tube. Ing. arch 57, 73–80 (1987). https://doi.org/10.1007/BF00536813

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00536813

Keywords

Navigation