Skip to main content
Log in

Mechanically initiated chemical reactions in solids

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The mechanical initiation of chemical reactions is of technological importance in such processes as cutting, drilling, grinding, crushing and lubrication which are often facilitated by chemical compound formation at the worked interface. The mechanisms whereby mechanical energy can be utilized in these reactions is reviewed with especial emphasis on the distinction between brittle and ductile, crystalline and amorphous materials. The practical examples mentioned above are discussed as well as the mechanical initiation of very fast reactions in solids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Carey-Lea, Phil. Mag. 34 (1892) 46.

    Google Scholar 

  2. Idem, ibid 36 (1893) 351.

    Google Scholar 

  3. Idem, ibid 37 (1894) 31, 470.

    Google Scholar 

  4. L. H. Parker, J. Chem. Soc. 105 (1914) 1504.

    Google Scholar 

  5. Idem, ibid 113 (1918) 396.

    Google Scholar 

  6. V. V. Boldyrev and E. G. Avvakumov, Russian Chem. Revs. 40 (1971) 847 (English trans.)

    Google Scholar 

  7. P. A. Thiessen, “Grundlagen der Tribochemie” (Wiss. Berlin Abh. Deut. Akad, Berlin, 1967).

    Google Scholar 

  8. W. S. Farren and G. I. Taylor, Proc. Roy. Soc. A107 (1925) 422.

    Google Scholar 

  9. G. I. Taylor and H. Quinney, ibid A143 (1934) 307.

    Google Scholar 

  10. A. W. Stepanov, Z. Phys. 81 (1933) 560.

    Google Scholar 

  11. F. R. N. Nabarro, “Theory of Crystal Dislocations” (O.U.P., London, 1967) p. 695.

    Google Scholar 

  12. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (O.U.P., London, 1953) p. 6.

    Google Scholar 

  13. J. D. Eshelby and P. L. Pratt, Acta Met. 4 (1956) 560.

    Google Scholar 

  14. A. M. Freundenthal and A. M. Weiner, J. Appl. Phys. 27 (1956) 44.

    Google Scholar 

  15. H. Shore, J. Washington Acad. Sci. 15 (1925) 85.

    Google Scholar 

  16. E. G. Herbert, Proc. Inst. Mech. Eng. 1 (1926) 289.

    Google Scholar 

  17. F. P. Bowden, M. A. Stone and G. K. Tudor, Proc. Roy. Soc. A188 (1947) 329.

    Google Scholar 

  18. F. P. Bowden and P. H. Thomas, ibid A223 (1954) 29.

    Google Scholar 

  19. F. P. Bowden and P. A. Persson, ibid A260 (1961) 433.

    Google Scholar 

  20. J. F. Nicholas, Acta Met. 7 (1959) 544.

    Google Scholar 

  21. I. Marshall and A. B. Thompson, Proc. Roy. Soc. A221 (1954) 541.

    Google Scholar 

  22. F. H. Müller and K. Jäckel, Kolloid Z. 129 (1952) 145.

    Google Scholar 

  23. D. V. Badami, F. P. Chappel, M. F. Culpin, D. Madoc Jones and T. C. Tranter, Rheol. Acta 1 (1961) 639.

    Google Scholar 

  24. L. Prandtl, Z. angew. Math. Mech. 3 (1923) 401.

    Google Scholar 

  25. A. Nadai, J. Appl. Mech. 6 (1939) A-54.

    Google Scholar 

  26. T. M. Cherry, Council Sci. Ind. Res., Australia A116 (1945) No. 8.

  27. F. R. Eirich and D. Tabor, Proc. Camb. Phil. Soc. 44 (1948) 566.

    Google Scholar 

  28. M. Seal, Nature 182 (1948) 1264.

    Google Scholar 

  29. N. Gane and J. M. Cox, J. Phys. D: Appl. Phys. 3 (1970) 121.

    Google Scholar 

  30. A. A. Griffith, Phil. Trans. Roy. Soc. A221 (1920) 163.

    Google Scholar 

  31. N. F. Mott, Engineering 165 (1948) 16.

    Google Scholar 

  32. J. J. Gilman, J. Appl. Phys. 27 (1956) 1262.

    Google Scholar 

  33. T. L. Johnston, R. H. Stokes and C. H. Li, Phil. Mag. 4 (1959) 1316.

    Google Scholar 

  34. A. W. Magnussen and W. H. Baldwin, J. Mech. Phys. Solids 5 (1957) 172.

    Google Scholar 

  35. A. Kelly, W. R. Tyson and A. H. Cottrell, Phil. Mag. 8 (1967) 567.

    Google Scholar 

  36. A. S. Tetelman, “Fracture in Solids” (edited by D. C. Drucker and J. J. Gilman) (Interscience, New York, 1963) p. 461.

    Google Scholar 

  37. V. Schmidt, “Physical basis of yield and fracture” (Inst. Phys. and Phys. Soc, London, 1966) p. 24.

    Google Scholar 

  38. M. M. Pawljutschenko and M. P. Gilewitsch, Ber. Akad. Wiss., U.S.S.R. 139 (1961) 648.

    Google Scholar 

  39. A. G. Smekal, Proceedings of the International Symposium on Reactivity of Solids, Gothenburg 1952, p. 125.

  40. G. Naeser and W. Scholtz, Kolloid Z. 156 (1958) 1.

    Google Scholar 

  41. P. G. Fox and J. Soria-Ruiz, Proc. Roy. Soc. A317 (1970) 79.

    Google Scholar 

  42. P. W. Bridgman, Phys. Rev. 48 (1935) 825.

    Google Scholar 

  43. Idem, J. Chem. Phys. 15 (1947) 311.

    Google Scholar 

  44. F. J. Turner, D. T. Griggs and H. Heard, Bull. geol. Soc. America 65 (1954) 883.

    Google Scholar 

  45. V. R. Regel, A. A. Urusovskaya and V. N. Kolomuchuck, Sov. Phys. Crystallography 4 (1960) 895.

    Google Scholar 

  46. W. G. Johnston, Prog. Ceram. Sci. 2 (1961) 1.

    Google Scholar 

  47. M. Faraday, Phil. Trans. Roy. Soc. (1834) 55.

  48. F. C. Tompkins, Pure Appl. Chem. 5 (1962) 501.

    Google Scholar 

  49. J. M. Thomas, Adv. Catalysis 19 (1969) 293.

    Google Scholar 

  50. M. V. Klassen-Neklyudova,“Mechanical twinning in crystals” (Consultants Bureau, New York, 1964).

    Google Scholar 

  51. J. M. Thomas and G. D. Renshaw, J. Chem. Soc. (A) (1967) 2058.

  52. P. G. Fox and J. Soria-Ruiz, Proc. Roy. Soc. A314 (1970) 429.

    Google Scholar 

  53. J. Bagg, H. Jaeger and J. V. Sanders, J. Catalysis 2 (1963) 449.

    Google Scholar 

  54. H. Jaeger, ibid 9 (1967) 237.

    Google Scholar 

  55. O. Baudisch and L. A. Welo, Naturwiss 21 (1933) 593.

    Google Scholar 

  56. Z. Nishiyama, Sci. Repts. Tohoku Univ. Ser. 1 25 (1935) 94.

    Google Scholar 

  57. M. A. Bredig, J. Phys. Chem. 46 (1942) 801.

    Google Scholar 

  58. J. H. Burns and M. A. Bredig, J. Chem. Phys. 25 (1956) 1281.

    Google Scholar 

  59. F. Dachille and Rustum Roy, J. Amer. Ceram. Soc. 41 (1959) 78.

    Google Scholar 

  60. Idem, Nature 186 (1960) 34.

    Google Scholar 

  61. R. Schrader and B. Hoffman, Z. Anorg. allgem. Chem. 41 (1969) 369.

    Google Scholar 

  62. C. Zener and J. H. Hollomon, J. Appl. Phys. 15 (1944) 22.

    Google Scholar 

  63. S. A. Mannion and T. A. C. Stock, J. Aust. Inst. Metals 14 (1969) 190.

    Google Scholar 

  64. Idem, Int. J. Fract. Mechs. 6 (1970) 106.

    Google Scholar 

  65. W. R. Harper, “Contact and frictional electrification” (O.U.P., London, 1967).

    Google Scholar 

  66. J. Burke, Nature 58 (1898) 533.

    Google Scholar 

  67. A. Imhof, Phys. Z. 18 (1917) 78.

    Google Scholar 

  68. H. Longchambon, Compt. Rend. 174 (1922) 1633.

    Google Scholar 

  69. Idem, ibid 176 (1923) 691.

    Google Scholar 

  70. F. G. Wick, J. Opt. Soc. America 30 (1940) 302.

    Google Scholar 

  71. W. A. Weyl, Research 3 (1950) 230.

    Google Scholar 

  72. H. Deuel and R. Gentile, Helv. Chim. Acta 39 (1956) 1586.

    Google Scholar 

  73. R. E. Benson and J. E. Castle, J. Phys. Chem. 62 (1958) 840.

    Google Scholar 

  74. G. K. Walkers and T. L. Estle, J. Appl. Phys. 32 (1961) 1854.

    Google Scholar 

  75. K. Mayer and F. Polly, Phys. stat. sol. 8 (1965) 441.

    Google Scholar 

  76. G. W. C. Taylor and A. T. Thomas, “Proceedings of the 2nd International Conference on Crystal Growth” (Elsevier, Amsterdam, 1969) p. 391.

    Google Scholar 

  77. P. G. Fox, J. M. Jenkins and G. W. C. Taylor, Explosivstoffe (1969) 181.

  78. A. Joffe and E. Zechnowitzer, Z. Phys. 35(1926) 446.

    Google Scholar 

  79. Z. Gyulai and D. Hartly, Z. Phys. 51 (1928) 378.

    Google Scholar 

  80. F. R. N. Nabarro, “Theory of crystal dislocations” (O.U.P., London, 1967) p. 595.

    Google Scholar 

  81. N. F. Mott and M. J. Littleton, Trans. Faraday Soc. 34 (1933) 485.

    Google Scholar 

  82. F. Seitz, Rev. mod. Phys. 23 (1951) 328.

    Google Scholar 

  83. F. Bassani and R. Thompson, Phys. Rev. 102 (1956) 1264.

    Google Scholar 

  84. J. D. Eshelby, C. W. A. Newey, P. L. Pratt and A. B. Lidiard, Phil. Mag. 3 (1958) 75.

    Google Scholar 

  85. J. Vennik, G. Remault and W. Dekeyser, Phil. Mag. 6 (1961) 359, 997.

    Google Scholar 

  86. J. E. Caffyn and T. L. Goodfellow, Proc. Phys. Soc. 79 (1962) 1285.

    Google Scholar 

  87. R. W. Whitworth, Phil. Mag. 15 (1967) 305.

    Google Scholar 

  88. J. Y. Wong, R. K. Linde and R. M. White, J. Appl. Phys. 40 (1969) 4137.

    Google Scholar 

  89. G. E. Hauver, J. Appl. Phys. 36 (1965) 2113.

    Google Scholar 

  90. F. E. Allison, ibid 36 (1965) 2111.

    Google Scholar 

  91. W. B. Lewis and W. E. Burcham, Proc. Camb. Phil. Soc. 32 (1936) 503.

    Google Scholar 

  92. J. Kramer, “Der metallische zustand” (Vanderhoeck and Ruprecht, Göttingen, 1950).

    Google Scholar 

  93. L. Grunberg, Brit. J. Appl. Phys. 8 (1958) 85.

    Google Scholar 

  94. A. Bohun, Czech. J. Phys. 3 (1953) 2; 5 (1955) 64, 224, 429.

    Google Scholar 

  95. J. Kramer, Naturwiss 41 (1954) 169; Acta Phys. Austria 10 (1957) 327.

    Google Scholar 

  96. W. T. Pimbley and E. E. Francis, J. Appl. Phys. 32 (1961) 1729.

    Google Scholar 

  97. C. Simoi, I. Hrianca and P. Cracuin, Phys. stat. sol. 29 (1968) 761.

    Google Scholar 

  98. W. D. Von Voss and F. R. Brotzen, J. Appl. Phys. 30 (1959) 1639.

    Google Scholar 

  99. T. F. Gesell, E. T. Arakawa and T. A. Calcott, Surface Sci. 20 (1970) 174.

    Google Scholar 

  100. H. Grohn, H. Friedrich and R. Paudert, Z. chem. 2 (1962) 24.

    Google Scholar 

  101. H. Grohn, R. Paudert and B. Hoesselbarth, Plast. Kautschuk 13 (1966) 1.

    Google Scholar 

  102. N. K. Barenboim, Uspekii Khim. 28 (1959) 877.

    Google Scholar 

  103. Idem, Mekhanochimiya Polimerov. Izd Khimiya (1963).

  104. A. K. Simionescu and K. Oprea, “Mechanochemistry of macromolecular compounds” (Izd. Mir, Moscow, 1970).

    Google Scholar 

  105. G. Heinicke, “Grundlagen der tribochemie” (Wiss. Berlin Abh. Deut. Akad., Berlin, 1967) p. 103.

    Google Scholar 

  106. G. Heinicke, R. Riedel and H. Harenz, Z. Phys. Chem. 223 (1964) 62.

    Google Scholar 

  107. G. Heinicke, Z. anorg. allgem. Chem. 324 (1963) 173.

    Google Scholar 

  108. Idem, Z. Chem. 2 (1962) 284.

    Google Scholar 

  109. G. Heinicke, M. Friedrich and C. Jech, Z. Phys. Chem. (Liepzig) 236 (1967) 191.

    Google Scholar 

  110. G. Heinicke and H. Harenz, Z. anorg. allgem. Chem. 324 (1963) 185.

    Google Scholar 

  111. Idem, Schmierstoffe schmierungstech. 21 (1967) 23.

    Google Scholar 

  112. Idem, Monatsber. (Deut. Akad. Wiss., Berlin) 11 (1969) 59.

    Google Scholar 

  113. G. Heinicke, H. Harenz and K. D. Sigrist, Z. anorg. allgem. Chem. 352 (1967) 168.

    Google Scholar 

  114. J. Eckell, J. Electrochem. angew. physik. Chem. 350 (1933) 148.

    Google Scholar 

  115. G. Heinicke, H. Harenz and K. D. Sigrist, Z. anorg. allgem. Chem. 350 (1967) 148.

    Google Scholar 

  116. I. Ming Feng and H. H. Uhlig, J. Appl. Mech. 21 (1954) 395.

    Google Scholar 

  117. N. N. Zorev, “Metal cutting mechanics” (Pergamon, London, 1966).

    Google Scholar 

  118. C. Agte, Angew Chem. 45 (1932) 658.

    Google Scholar 

  119. J. P. Baxter, J. Inst. Petrol. 25 (1939) 761.

    Google Scholar 

  120. W. Davey, ibid 31 (1945) 154.

    Google Scholar 

  121. G. I. Finch, Brit. J. Appl. Phys. 1 (1951) 34.

    Google Scholar 

  122. C. G. Williams, Proc. Roy. Soc. A212 (1952) 512.

    Google Scholar 

  123. G. Grane and W. Lückerath, Schmiertechnik 12 (1965) 5.

    Google Scholar 

  124. K. Streckusen, Tech. Rundschau. 40 (1964) 1.

    Google Scholar 

  125. M. Fink, Stahl und Eisen 52 (1932) 42, 1026.

    Google Scholar 

  126. M. Fink and U. Hofmann, Z. Anorg. allgem. Chem. 210 (1933) 100.

    Google Scholar 

  127. F. P. Bowden and D. Tabor, “The friction and lubrication of solids” (O.U.P., London, 1950) Chapter 7.

    Google Scholar 

  128. R. T. Allsop, Metallurgia 52 (1959) 39.

    Google Scholar 

  129. M. C. Shaw, J. Appl. Mech. 15 (1948) 37.

    Google Scholar 

  130. P. A. Rehbinder, Nature 159 (1957) 866.

    Google Scholar 

  131. P. L. Barlow, Proc. Inst. Mech. Eng. 181 (1966) 687.

    Google Scholar 

  132. M. C. Shaw, J. D. Pigott and L. P. Richardson, Trans. A.S.M.E. 73 (1951) 45.

    Google Scholar 

  133. R. B. Waterhouse, Tribology 3 (1970) 158.

    Google Scholar 

  134. B. H. Wilkinson and P. Warburton, “Machinability”, Conf. Proc. Iron and Steel Inst. Special Rept. No. 94, 1967, p. 215.

  135. G. Heinicke and H. Harenz, Technik 24 (1969) 252.

    Google Scholar 

  136. Idem, Z. Phys. Chem. (Leipzig) 240 (1969) 325.

    Google Scholar 

  137. R. Schrader and G. Tetzner, Z. anorg. allgem. Chem. 309 (1961) 55.

    Google Scholar 

  138. R. Schrader, Z. Kroll and S. Seifert, ibid 336 (1965) 11.

    Google Scholar 

  139. G. Heinicke and H. Harenz, Technik 23 (1968) 236.

    Google Scholar 

  140. Idem, Schmierstoffe und Schmierungstech. 30 (1968) 4.

    Google Scholar 

  141. G. E. Spriggs, Powder Met. 7 (1961) 296.

    Google Scholar 

  142. G. Heinicke and K. D. Sigrist, Z. Chem. 6 (1966) 291.

    Google Scholar 

  143. Idem, Monatsber. Deut. Akad. Wiss., Berlin 11 (1969) 44.

    Google Scholar 

  144. G. Heinicke and H. P. Hennig, Schmiertechnik 14 (1967) 80.

    Google Scholar 

  145. S. N. Zurkov, Int. J. Fract. Mechs. 1 (1965) 311.

    Google Scholar 

  146. S. N. Zurkov and E. E. Tomashevsky, “Physical basis of yield and fracture” (Inst. Phys. and Phys. Soc, London, 1966) p. 200.

    Google Scholar 

  147. F. P. Bowden and D. Tabor, “The friction and lubrication of solids II” (O.U.P., London, 1964) p. 362.

    Google Scholar 

  148. L. E. Samuels, “Metallographic polishing by mechanical methods” (Pitman, London, 1967) p. 21.

    Google Scholar 

  149. C. A. Brookes, Nature 228 (1970) 660.

    Google Scholar 

  150. F. P. Bowden and H. G. Scott, Proc. Roy. Soc. A248 (1958) 368.

    Google Scholar 

  151. F. P. Bowden and E. H. Freitag, ibid A248 (1958) 350.

    Google Scholar 

  152. M. Tolkowsky, Ph.D. Thesis, University of London, 1920.

  153. Y. Yarnitsky, private communication, 1969.

  154. Ya. B. Zel'dovich and Yu. P. Raizer, “Physics of shock waves and high temperature hydrodynamic phenomena” (Academic, London, 1967) Vol. 2, Chapter 11.

    Google Scholar 

  155. D. L. Chapman, Phil. Mag. 47 (1899) 90.

    Google Scholar 

  156. E. Jouguet, Compt. Rend. 132 (1901) 673.

    Google Scholar 

  157. Idem, ibid 134 (1902) 1413; 135 (1902) 779.

    Google Scholar 

  158. Idem, ibid 138 (1904) 1685; 139 (1904) 121.

    Google Scholar 

  159. H. Eyring, R. F. Powell, G. H. Duffey and R. B. Parlin, Chem. Rev. 45 (1949) 69.

    Google Scholar 

  160. M. W. Evans, ibid 61 (1961) 129.

    Google Scholar 

  161. F. P. Bowden and A. D. Yoffe, “Fast reactions in solids” (Butterworth, London, 1958).

    Google Scholar 

  162. J. D. Bernal, Trans. Faraday Soc. 34 (1938) 1008.

    Google Scholar 

  163. A. R. Ubbelhode, J. L. Copp, S. E. Napier, T. Nash, W. J. Powell, A. Skelly and P. Woodward, Phil. Trans. Roy. Soc. A241 (1948) 197.

    Google Scholar 

  164. P. G. Fox, J. Solid State Chem. 2 (1970) 491.

    Google Scholar 

  165. W. Taylor and A. Weale, Proc. Roy. Soc. A138 (1932) 92.

    Google Scholar 

  166. L. R. Carl, J. Franklin Inst. 230 (1940) 355.

    Google Scholar 

  167. R. P. Kambour, J. Appl. Polymer Sci. (Symp.) 7 (1968) 215.

    Google Scholar 

  168. R. P. Kambour and A. S. Holik, J. Polymer Sci. A2 7 (1969) 1393.

    Google Scholar 

  169. P. G. Fox and K. N. G. Fuller, Nature 234 (1971) 13. Proc. Roy. Soc. A (1974) in press.

    Google Scholar 

  170. V. R. Regel, T. M. Muinov and O. P. Pozdnyakov, “Physical basis of yield and fracture” (Inst. Phys. and Phys. Soc, London, 1966) p. 194.

    Google Scholar 

  171. N. H. Macmillan and A. R. C. Westwood, “Surfaces and interfaces of glass and ceramics” (Plenum Press, New York, 1974) in press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fox, P.G. Mechanically initiated chemical reactions in solids. J Mater Sci 10, 340–360 (1975). https://doi.org/10.1007/BF00540358

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00540358

Keywords

Navigation