Skip to main content
Log in

Microhardness investigations on manganese aluminate spinels

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Vickers microhardness measurements were carried out on single-crystalline manganese aluminates having compositions ranging from Mn1.83Al1.17O4 to Mn0.91Al2.060.03O4. Hardness increases with increasing alumina content, but the hyperstoichiometric composition shows a decline of hardness probably due to structural vacancies. In Mn1.83Al1.17O4 the crack pattern round indentations is independent of relative indenter orientation and can be accounted for by the presence of a {110} glide system. Apparent hardness anisotropy is related to the position of these glide planes in the surface. In all other harder specimens of this series, other glide systems also become operative during indentation. The occurrence of a pre-precipitation phase after the annealing of specimens is revealed by an increase in hardness, followed by a decline which is due to over-ageing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Bückle, Met. Rev. 4 (1959) 49.

    Google Scholar 

  2. Idem, “L'essai de microdureté et ses applications”. (Publications Scientifiques et Techniques du Ministère de l'Air, Paris 1960) (German Translation: Berliner Union, Stuttgart, 1965).

    Google Scholar 

  3. Yu. S. Boyarskaya, D. Z. Grabko and J. J. Melent'ev, Izv. Akad. Nauk. Mold. S.S.R., Ser. Fiz. Tekh. Mat. Nauk. (1971) 30.

  4. B. B. Young and A. P. Millman, Inst. Mining Met., Trans. 73 (1963/4) 437.

    Google Scholar 

  5. Yu. S. Boyarskaya and D. Z. Grabko, Krist. Tech. 8 (1973) 1367.

    Google Scholar 

  6. H. Winchell, Amer. Mineral. 30 (1945) 583.

    Google Scholar 

  7. T. Ito, J. Amer. Ceram. Soc. 54 (1971) 24.

    Google Scholar 

  8. H. Saalfeld and H. Jagodzinski, Z. Kristallogr. 109 (1957) 87.

    Google Scholar 

  9. J. G. Grabmaier and H. R. Falckenberg, J. Amer. Ceram. Soc. 52 (1969) 648.

    Google Scholar 

  10. W. F. Eppler, Z. Angew. Mineral. 4 (1943) 345.

    Google Scholar 

  11. A. Mangin and H. Forestier, Compt. Rend. Acad. Sci. 242 (1956) 1893.

    Google Scholar 

  12. D. Viechnicki, F. Schmid and J. W. McCauley, J. Appl. Phys. 43 (1972) 4508.

    Google Scholar 

  13. A.-M. Lejus and R. Collongues, Compt. Rend. Acad. Sci. 251 (1960) 959.

    Google Scholar 

  14. A.-M. Lejus, Rev. Hautes Temp. Réfract. 1 (1964) 53.

    Google Scholar 

  15. V. S. Stubican, C. Greskovich and H. A. McKinstry, J. Amer. Ceram. Soc. 52 (1969) 174.

    Google Scholar 

  16. E. H. L. J. Dekker and G. D. Rieck, Rev. Int. Hautes Temp. Refract. 11 (1974) [3] to be published.

  17. E. H. L. J. Dekker and G. D. Rieck, J. Cryst. Growth. 23 (1974) 143.

    Google Scholar 

  18. A. S. Keh, J. C. M. Li and Y. T. Chou, Acta Met. 7 (1959) 694.

    Google Scholar 

  19. M. H. Lewis, Phil. Mag. 17 (1968) 481.

    Google Scholar 

  20. K. C. Radford and C. W. A. Newey, Proc. Brit. Ceram. Soc. 9 (1967) 131.

    Google Scholar 

  21. C. W. A. Newey and K. C. Radford, in “Anisotropy in single-crystal refractory compounds”, Proceedings of the International Symposium, Dayton 1967 (edited by F. W. Vahldiek and S. A. Mersol) (Plenum Press, New York, 1968) Vol. 2, p. 321.

    Google Scholar 

  22. N. Doukhan, R. Duclos and B. Escaig, J. Phys. (Paris) 34 (1973) C9: 379.

    Google Scholar 

  23. P. Charpentier, P. Rabbe and J. Manenc, Mater. Res. Bull. 3 (1968) 69.

    Google Scholar 

  24. J. H. Westbrook and P. J. Jorgensen, Trans. Met. Soc. AIME 233 (1965) 425.

    Google Scholar 

  25. Idem, in “Anisotropy in single-crystal refractory compounds”, Proceedings of the International Symposium, Dayton 1967 (edited by F. W. Vahldiek and S. A. Mersol) (Plenum Press, New York, 1968) Vol. 2, p. 353.

    Google Scholar 

  26. H. Tertsch, Neues Jahrb. Mineral., Monatsh. (1951) 73.

  27. J. H. Westbrook, Rev. Hautes Temp. Réfract. 3 (1966) 47.

    Google Scholar 

  28. S. I. Lebedeva, Tr. Inst. Mineralog., Geokhim. i. Kristallokhim. Redkikh Elementov, Akad. Nauk. SSSR (1961) 89.

  29. S. H. U. Bowie and K. Taylor, Mining Mag. 99 (1958) 265, 337.

    Google Scholar 

  30. J. Siebel, Metall. Erz. 40 (1943) 169.

    Google Scholar 

  31. G. Toubeau, Bull. Soc. Belge Géol. 71 (1962) 242.

    Google Scholar 

  32. F. Zábransky and J. Drabant, Geol. Zb. (Bratislava) 21 (1970) 99.

    Google Scholar 

  33. G. C. Wood and T. Hodgkiess, Werkst. Korros. 23 (1972) 766.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dekker, E.H.L.J., Rieck, G.D. Microhardness investigations on manganese aluminate spinels. J Mater Sci 9, 1839–1846 (1974). https://doi.org/10.1007/BF00541755

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00541755

Keywords

Navigation