Skip to main content
Log in

Effect of bath and specimen temperature on the thermal stress resistance of brittle ceramics subjected to thermal quenching

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The effect of specimen and bath temperature on the failure of brittle ceramics in a thermal quench experiment was studied by quenching glass and alumina rods in water and silicon oil baths at different temperatures. The results were discussed in terms of the variation of heat transfer coefficient of the quenching media and the change in material properties as a function of temperature. It was found that the usual assumption of constant heat transfer coefficient and material properties may lead to considerable errors in the quantitative interpretation of the results of thermal quench experiments. Effective values for the film coefficient of heat transfer for water and oil baths were estimated as a function of film temperature from thermal quench data. Recommendations were made for the selection of quenching media and for the procedure to be followed in reporting the results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. A. Boley and J. H. Weiner, “Theory of Thermal Stresses” (Wiley and Sons, New York, 1960).

    Google Scholar 

  2. D. P. H. Hasselman, J. Amer. Ceram. Soc. 52 (1969) 600.

    Google Scholar 

  3. W. D. Kingery, ibid. 38 (1955) 3.

    Google Scholar 

  4. D. P. H. Hasselman, Ceramurgia 4 (1979) 147.

    Google Scholar 

  5. J. P. Singh, J. R. Thomas, Jr and D. P. H. Hasselman, J. Amer. Ceram. Soc. 63 (1980) 140.

    Google Scholar 

  6. D. P. H. Hasselman, J. R. Thomas, Jr, M. P. Kamat and K. Satyamurthy, ibid. 63 (1980) 21.

    Google Scholar 

  7. R. W. Davidge and G. Tappin, Trans. Brit. Ceram. Soc. 66 (1967) 405.

    Google Scholar 

  8. D. P. H. Hasselman, J. Amer. Ceram. Soc. 53 (1970) 490.

    Google Scholar 

  9. E. Glenny and M. G. Royston, Trans. Brit. Ceram. Soc. 57 (1958) 645.

    Google Scholar 

  10. K. Anzai and H. Hashimoto, J. Mater. Sci. 12 (1977) 235.

    Google Scholar 

  11. R. Badaliance, D. A. Krohn and D. P. H. Hasselman, J. Amer. Ceram. Soc. 57 (1974) 432.

    Google Scholar 

  12. W. Weibull, J. Appl. Mech. 18 (1951) 293.

    Google Scholar 

  13. D. P. H. Hasselman, R. Badaliance, K. R. McKinney and C. H. Kim, J. Mater. Sci, 11 (1976) 458.

    Google Scholar 

  14. J. C. Jaeger, Philos. Mag. 36 (1945) 418.

    Google Scholar 

  15. S. S. Manson and R. W. Smith, Trans. ASME 78 (1956) 533.

    Google Scholar 

  16. K. Satyamurthy, J. P. Singh, D. P. H. Hasselman and M. P. Kamat, J. Amer. Chem. Soc. 63 (1980) 694.

    Google Scholar 

  17. F. Kreith, “Principles of Heat Transfer,” (Intext Educational Publishers, New York, 1973).

    Google Scholar 

  18. E. B. Shand, “Glass Engineering Handbook” (McGraw-Hill Book Co., New York, 1958).

    Google Scholar 

  19. P. F. Becher, D. Lewis III, K. R. Carman and A. C. Gonzalez, J. Amer. Ceram. Soc. 59 (1980) 542.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, J.P., Tree, Y. & Hasselman, D.P.H. Effect of bath and specimen temperature on the thermal stress resistance of brittle ceramics subjected to thermal quenching. J Mater Sci 16, 2109–2118 (1981). https://doi.org/10.1007/BF00542371

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00542371

Keywords

Navigation