Skip to main content
Log in

Phase separation mechanism of rubber-modified epoxy

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The phase separation mechanism during the cure reaction of a liquid rubber-modified epoxy resin was investigated by light scattering, light microscopy, torsional braid analysis, electron microscopy, and differential scanning calorimetry. The binary mixture of epoxy oligomer (diglycidyl ether of bisphenol A) and carboxyl-terminated butadiene-acrylonitrile copolymer (liquid rubber) exhibited the upper critical solution temperature-type phase behaviour. The mixture loaded with curing agent was a single-phase system in the early stage of curing. When the cure reaction proceeded, phase separation took place via the spinodal decomposition induced by the increase in the molecular weight of epoxy. This was supported by the characteristic change of light scattering profile with curing time. Electron microscopy revealed that, in cured resin, the spherical rubber domains are dispersed somewhat regularly in an epoxy matrix. The regular domain arrangement seems to result from a specific situation; the competitive progress of the spinodal decomposition and polymerization; i.e. the coarsening process to irregular domain structure seems to be suppressed by network formation in the epoxy phase. It was also shown that curing at higher temperatures resulted in the suppression at an earlier stage of spinodal decomposition, and hence, shorter interdomain spacing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Kunz-Douglass, P. W. R. Beaumont and M. F. Ashby, J. Mater. Sci. 15 (1980) 1109.

    Google Scholar 

  2. W. D. Bascom, R. Y. Ting, R. J. Moulton, C. K. Riew and A. R. Siebert, J. Mater. Sci. 16 (1981) 2657.

    Google Scholar 

  3. L. T. Manzione, J. K. Gillham and C. A. McPherson, J. Appl. Polym. Sci. 26 (1981) 907.

    Google Scholar 

  4. S. C. Kunz, J. A. Sayre and R. A. Assink, Polymer 23 (1982) 1897.

    Google Scholar 

  5. A. J. Kinloch, S. J. Shaw, D. A. Tod and D. E. Hunston, ibid. 24 (1983) 1341.

    Google Scholar 

  6. P. Bartlet, J. P. Pascault and H. Sautereau, J. Appl. Polym. Sci. 30 2955 (1985).

    Google Scholar 

  7. A. J. Kinloch, D. G. Gilbert and S. J. Shaw, J. Mater. Sci. 21 (1986) 1051.

    Google Scholar 

  8. A. F. Yee and R. A. Pearson, J. Mater. Sci. 21 (1986) 2462.

    Google Scholar 

  9. T. T. Wang and H. M. Zupko, J. Appl. Polym. Sci. 26 (1981) 2391.

    Google Scholar 

  10. H. N. Náe, J. Appl. Polym. Sci. 31 (1986) 15.

    Google Scholar 

  11. A. Vázquez, A. J. Rojas, H. E. Adabbo, J. Borrajo and R. J. J. Williams, Polymer 28 (1987) 1156.

    Google Scholar 

  12. Y. Takagi, T. Ougizawa and T. Inoue, ibid. 28 (1987) 103.

    Google Scholar 

  13. R. S. Stein and M. B. Rhodes, J. Appl. Phys. 31 (1969) 1873.

    Google Scholar 

  14. J. Maruta, T. Ougizawa and T. Inoue, Polymer 30 (1988) XXX.

    Google Scholar 

  15. K. Binder, J. Chem. Phys. 79 (1983) 6387.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamanaka, K., Inoue, T. Phase separation mechanism of rubber-modified epoxy. J Mater Sci 25, 241–245 (1990). https://doi.org/10.1007/BF00544214

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544214

Keywords

Navigation