Skip to main content
Log in

Fatigue limits in noncyclic loading of ceramics with crack-resistance curves

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Fatigue properties in the noncyclic loading of ceramics with R-curves are studied. Particular attention is directed to the potential role of R-curves in the enhancement of fatigue limits. A numerical algorithm for solving the appropriate differential equations of rate-dependent failure is developed. Our formalism specifically incorporates a crack-size dependent toughness function, based on grain-localized interfacial bridging, and a hyperbolic-sine velocity function, representative of a fundamental activation process. In a case study, dynamic fatigue (constant stressing rate) and static fatigue (constant applied stress) data for a coarse-grained alumina with a pronounced R-curve are analysed. With foreknowledge of the toughness parameters, the intrinsic crack-tip velocity function is deconvoluted. This intrinsic function is distinguished from the usual “apparent”, or “shielded”, (and demonstrably nonunique) function determined directly from the external load. It is confirmed that the R-curve, by virtue of its stabilizing influence on the crack growth, significantly enhances the fatigue limit, and confers the quality of “flaw tolerance” on fatigue lifetimes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Wiederhorn, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 613.

    Google Scholar 

  2. A. G. Evans and S. M. Wiederhorn, Int. J. Fract. 10 (1974) 379.

    Google Scholar 

  3. S. M. Wiederhorn and J. E. Ritter Jr, in “Fracture Mechanics Applied to Brittle Materials”, edited by S. W. Freiman, ASTM Special Technical Publication no. 678 (ASTM, Philadelphia, Pennsylvania, 1979) p. 202.

    Google Scholar 

  4. H. H. Johnson and P. C. Paris, Engng Fract. Mech. 1 (1968) 3.

    Google Scholar 

  5. R. F. Cook, J. Mater. Res. 1 (1986) 852.

    Google Scholar 

  6. T. A. Michalske, in “Fracture Mechanics of Ceramics”, Vol. 5, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1983) p. 277.

    Google Scholar 

  7. B. R. Lawn, D. H. Roach and R. M. Thomson, J. Mater. Sci. 22 (1987) 4036.

    Google Scholar 

  8. S. J. Bennison and B. R. Lawn, Acta Metall in press.

  9. H. Hubner and W. Jillek, J. Mater. Sci. 12 (1977) 117.

    Google Scholar 

  10. R. W. Steinbrech, R. Knehans and W. Schaarwachter, ibid. 18 (1983) 265.

    Google Scholar 

  11. R. F. Cook, B. R. Lawn and C. J. Fairbanks, J. Amer. Ceram. Soc. 68 (1985) 604.

    Google Scholar 

  12. C. J. Fairbanks, B. R. Lawn, R. F. Cook and Y-W. Mai, in “Fracture Mechanics of Ceramics”, Vol. 8, edited by R. R. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 23.

    Google Scholar 

  13. P. L. Swanson, C. J. Fairbanks, B. R. Lawn, Y. W. Mai and B. J. Hockey, J. Amer. Ceram. Soc. 70 (1987) 279.

    Google Scholar 

  14. Y-W. Mai and B. R. Lawn, ibid. 70 (1987) 289.

    Google Scholar 

  15. R. F. Cook, C. J. Fairbanks, B. R. Lawn and Y-W. Mai, J. Mater. Res. 2 (1987) 345.

    Google Scholar 

  16. M. Sakai and R. C. Bradt, J. Ceram. Soc. Jpn 96 (1988) 801.

    Google Scholar 

  17. B. R. Lawn, J. Amer. Ceram. Soc. 66 (1983) 83.

    Google Scholar 

  18. P. F. Becher, T. N. Tiegs, J. C. Ogle and W. H. Warwick, in “Fracture Mechanics of Ceramics”, Vol. 7, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) pp. 61–73.

    Google Scholar 

  19. D. B. Marshall and B. R. Lawn, J. Amer. Ceram. Soc. 63 (1980) 532.

    Google Scholar 

  20. P. Chantikul, B. R. Lawn and D. B. Marshall, ibid. 64 (1981) 322.

    Google Scholar 

  21. B. R. Lawn, D. B. Marshall, G. R. Anstis and T. P. Dabbs, J. Mater. Sci. 16 (1981) 2846.

    Google Scholar 

  22. E. R. Fuller, B. R. Lawn and R. F. Cook, J. Amer. Ceram. Soc. 66 (1983) 314.

    Google Scholar 

  23. R. F. Cook, B. R. Lawn and C. J. Fairbanks, ibid. 68 (1985) 616.

    Google Scholar 

  24. S. J. Bennison and B. R. Lawn, J. Mater. Sci., in press.

  25. B. R. Lawn and T. R. Wilshaw, “Fracture of Brittle Solids” (Cambridge University Press, London, 1975) Chs 3, 8.

    Google Scholar 

  26. B. R. Lawn, J. Mater. Sci. 10 (1975) 469.

    Google Scholar 

  27. B. R. Lawn and S. Lathabai, Mater. Forum 11 (1988) 313.

    Google Scholar 

  28. D. B. Marshall and B. R. Lawn, J. Mater. Sci. 14 (1979) 2001.

    Google Scholar 

  29. Y-W. Mai and B. R. Lawn, Ann. Rev. Mater. Sci. 16 (1986) 415.

    Google Scholar 

  30. S. W. Freiman, K. R. McKinney and H. L. Smith, in “Fracture Mechanics of Ceramics”, Vol. 2, edited by R. C. Bradt, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1974) p. 659.

    Google Scholar 

  31. B. J. Pletka and S. M. Wiederhorn, J. Mater. Sci. 17 (1982) 1247.

    Google Scholar 

  32. P. L. Swanson, in “Fracture Mechanics of Ceramics”, Vol. 8, edited by R. C. Bradt, A. G. Evans, D. P. H. Hasselman and F. F. Lange (Plenum, New York, 1986) p. 299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Guest Scientist: on leave from the Department of Materials Science and Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, USA.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lathabai, S., Lawn, B.R. Fatigue limits in noncyclic loading of ceramics with crack-resistance curves. J Mater Sci 24, 4298–4306 (1989). https://doi.org/10.1007/BF00544502

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00544502

Keywords

Navigation