Skip to main content
Log in

On precipitation in rapidly solidified aluminium-silicon alloys

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The precipitation of silicon in rapidly solidified AlSi alloys was studied. For alloys with 2.4 and 11.0 wt % Si (2.3 and 10.3 at % Si, respectively) the lattice parameters of the Alrich and of the Si-rich phases were measured after ageing at 397,425 and 448 K. For alloys with 2.6 and 13.0 wt % Si crystallite sizes and lattice strains were determined by analysis of the X-ray diffraction line broadening. After ageing the lattice parameters of the Al-rich and the Si-rich phases were influenced by the difference in thermal expansion between both phases. After correction for this effect the amount of silicon dissolved in the Al-rich phase was estimated as a function of ageing time. Quenched-in (excess) vacancies influenced the precipitation kinetics. Activation energies for precipitation appeared to depend on the extent of transformation. Further, quenched-in vacancies caused anomalous maxima in the lattice parameter curves. The behaviour of the lattice microstrains on ageing was explained as a result of the disappearance of stresses due to quenching and the introduction and subsequent dissipation of stresses due to precipitation. After completed precipitation stresses due to the difference in thermal expansion between both phases still exist at room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Itagaki, B. C. Giessen and N. J. Grant, Trans. ASM 61 (1968) 330.

    Google Scholar 

  2. A. Bendijk, R. Delhez, L. Katgerman, Th. H. de Keijser, E. J. Mittemeijer and N. M. Van Der Pers, J. Mater. Sci. 15 (1980) 2803.

    Google Scholar 

  3. H. S. Rosenbaum and D. Turnbull, Acta Metall. 6 (1958) 653.

    Google Scholar 

  4. Idem, ibid. 7 (1959) 664.

    Google Scholar 

  5. A. Saulnier, Mem. Sci. Rev. Métall. LVIII (1961) 615.

    Google Scholar 

  6. E. Ozawa and H. Kimura, Acta Metall. 18 (1970) 995.

    Google Scholar 

  7. Idem, Mater. Sci. Eng. 8 (1971) 327.

    Google Scholar 

  8. W. Koster and W. Knorr, Z. Metallkd. 45 (1954) 616.

    Google Scholar 

  9. H. Matyja, K. C. Russell, B. C. Giessen and N. J. Grant, Met. Trans. A 6A (1975) 6249.

    Google Scholar 

  10. J. A. Wert, Acta Metall. 28 (1980) 1361.

    Google Scholar 

  11. J. B. M. Nuyten, Thesis, Technological University of Delft (1970).

  12. R. W. Balluffi, K. H. Lie and D. N. Seidman, in “Vacancies and Interstitials in Metals”, edited by A. Seeger, D. Schumacher, W. Schilling and J. Diehl (North Holland Publishing Corp., Amsterdam, 1969) p. 125.

    Google Scholar 

  13. D. Kuhlmann-Wilsdorf and H. G. F. Wilsdorf, J. Appl. Phys. 31 (1960) 516.

    Google Scholar 

  14. M. Kiritani, J. Phys. Soc. Jpn. 19 (1964) 618.

    Google Scholar 

  15. Idem, ibid. 20 (1965) 1854.

    Google Scholar 

  16. P. B. Hirsch, J. Silcox, R. E. Smallman and K. H. Westmacott, Phil. Mag. 3 (1958) 897.

    Google Scholar 

  17. W. DeSorbo and D. Turnbull, Acta Metall. 7 (1959) 83.

    Google Scholar 

  18. Idem, Phys. Rev. 115 (1959) 560.

    Google Scholar 

  19. C. Panseri and T. Federighi, Phil. Mag. 3 (1958) 1223.

    Google Scholar 

  20. W. M. Lomer, in “Vacancies and Other Point Defects in Metals and Alloys”, Institute of Metals, Monograph and report series, no. 23 (The Institute of Metals, London, 1958) p. 79.

    Google Scholar 

  21. F. W. Schapink, Thesis, Technological University of Delft (1969).

  22. K. H. Westmacott, R. S. Barnes, D. Hull and R. E. Smallman, Phil. Mag. 6 (1961) 939.

    Google Scholar 

  23. G. Thomas and R. H. Willens, Acta Metall. 12 (1964) 191.

    Google Scholar 

  24. H. Jones, Proceedings of a Conference on Point Defect Behaviour and Diffusional Processes, Bristol, September 1976, edited by R. E. Smallman and J. E. Harris (The Metals Society, London, 1976) p. 175.

    Google Scholar 

  25. E. J. Mittemeijer, P. Van Mourik and Th. H. De Keijser. Phil. Mag. A. 43 (1981) 1157.

    Google Scholar 

  26. R. Delhez, Th. H. De Keijser, E. J. Mittemeijer, P. Van Mourik, N. M. Van Der Pers, L. Katgerman and W. E. Zalm, J. Mater. Sci. 17 (1982) 2887.

    Google Scholar 

  27. Th. H. De Keijser, J. I. Langford, E. J. Mittemeijer and A. B. P. Vogels, J. Appl. Cryst. 15 (1982) 308.

    Google Scholar 

  28. H. P. Klug and L. E. Alexander, “X-ray Diffraction Procedures” 2nd edn (John Wiley and Sons, New York, 1974).

    Google Scholar 

  29. W. B. Pearson, “Handbook of Lattice Spacings and Structures of Metals” Vol. 2 (Pergamon Press, London, 1967).

    Google Scholar 

  30. R. K. Nandi and S. P. Sen Gupta, J. Appl. Cryst. 11 (1978) 6.

    Google Scholar 

  31. H. J. Axon and W. Hume-Rothery, Proc. Roy. Soc. London 193A (1948) 1.

    Google Scholar 

  32. O. D. Sherby, J. L. Robbins and A. Goldberg, J. Appl. Phys. 41 (1970) 3961.

    Google Scholar 

  33. R. O. Simmons and R. W. Balluffi, Phys. Rev. 117 (1960) 52.

    Google Scholar 

  34. A. Phillips and R. M. Brick, Trans. AJMME Inst. Met. 111 (1934) 94.

    Google Scholar 

  35. L. W. Kempf, H. L. Hopkins and E. V. Ivanso, ibid. 111 (1934) 158.

    Google Scholar 

  36. R. M. Brick, A. Phillips and A. J. Smith, ibid. 117 (1935) 102.

    Google Scholar 

  37. L. F. Mondolfo, “Aluminium Alloys, Structures and Properties” (Butterworths, London, 1976).

    Google Scholar 

  38. J. W. Christian, “The Theory of Transformations in Metals and Alloys” 2nd edn, Part I (Pergamon Press, Oxford, 1975) pp. 542 and 201.

    Google Scholar 

  39. A. Beerwald, Z. Electrochem. 45 (1939) 789.

    Google Scholar 

  40. J. Burke, “The Kinetics of Phase Transformations in Metals” (Pergamon Press, Oxford, 1965) p. 80.

    Google Scholar 

  41. F. Wamich, Thesis, Technological University of Aachen, Aachen (1965).

    Google Scholar 

  42. J. D. Eshelby, Solid State Phys. 3 (1956) 79.

    Google Scholar 

  43. C. J. Smithells, “Metals Reference Book” 5th edn (Butterworths, London, 1976).

    Google Scholar 

  44. R. B. Roberts, “Thermal Expansion”, edited by I. D. Peggs (Plenum, New York, 1978) p. 189.

    Google Scholar 

  45. W. Boas and R. W. K. Honeycombe, Proc. Roy. Soc. London 186A (1946) 57.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Van Mourik, P., Mittemeijer, E.J. & De Keijser, T.H. On precipitation in rapidly solidified aluminium-silicon alloys. J Mater Sci 18, 2706–2720 (1983). https://doi.org/10.1007/BF00547587

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547587

Keywords

Navigation