Skip to main content
Log in

Crack healing and fracture strength of silicon crystals

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The influence of annealing at 700 to 1100° C on fracture strength of pre-cracked silicon wafers was examined by four-point bending tests at room temperature. The fracture strengths of the specimens annealed in oxygen increased significantly with increasing annealing temperature. On the other hand, annealing in vacuum showed little influence on the fracture strength. The strength increase by the annealing in oxygen was found to be caused by crack healing. Utilizing transmission electron microscopy, it is suggested that the crack surfaces were rebonded by the formation of a thin oxide layer at the crack interface. The activation energy for the crack healing was determined to be 2.0±0.1 eV, which was consistent with that of the reaction-limited growth of thin oxide film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. J. Mets, J. Eleclrochem. Soc. 112 (1965) 420.

    Google Scholar 

  2. D. Pomerantz, J. Appl. Phys. 38 (1967) 5020.

    Google Scholar 

  3. C. L. Reed and K. M. Mar, J. Electrochem. Soc. 127 (1980) 2058.

    Google Scholar 

  4. Y. Hayafuji, T. Yanada and Y. Aoki, ibid. 128 (1981) 1975.

    Google Scholar 

  5. G. E. J. Eggermont, D. F. Allison, S. A. Gee, K. N. Ritz, R. J. Falster and J. F. Gibbons, in “Laser and Electron Beam Interaction with Solids”, edited by B. R. Appleton and G. K. Celler (North-Holland, New York, 1982) p. 615.

    Google Scholar 

  6. R. Stickler and G. R. Booker, Phil. Mag. 8 (1963) 859.

    Google Scholar 

  7. C. St. John, ibid. 32 (1975) 1193.

    Google Scholar 

  8. C. P. Chen and M. H. Leipold, Amer. Ceram. Soc. Bull. 59 (1980) 469.

    Google Scholar 

  9. C. Messmer and J. C. Bilello, J. Appl. Phys. 52 (1981) 4623.

    Google Scholar 

  10. B. R. Lawn, A. G. Evans and D. B. Marshall, J. Amer. Ceram. Soc. 63 (1980) 574.

    Google Scholar 

  11. B. R. Lawn, D. B. Marshall and P. Chantikul, J. Mater. Sci. 16 (1981) 1769.

    Google Scholar 

  12. G. E. J. Eggermont, S. A. Gee, C. G. M. van Kessel, R. J. Falster and J. F. Gibbons, Appl. Phys. Lett. 41 (1982) 1133.

    Google Scholar 

  13. W. Kaiser and P. H. Keck, J. Appl. Phys. 28 (1957) 882.

    Google Scholar 

  14. J. J. Petrovic, L. A. Jacobson, P. K. Talty and A. K. Vasudevan, J. Amer. Ceram. Soc. 58 (1975) 113.

    Google Scholar 

  15. J. J. Petrovic and L. A. Jacobson, ibid. 59 (1976) 34.

    Google Scholar 

  16. S. P. Timoshenko and J. N. Goodier, “Theory of Elasticity” (McGraw Hill, New York, 1951).

    Google Scholar 

  17. B. J. Hockey and B. R. Lawn, J. Mater. Sci. 10 (1975) 1275.

    Google Scholar 

  18. R. H. Keays, Structure and Materials Rept. 343, Department of Supply, Australian Defence Scientific Service, Aeronautical Research Laboratories, April (1973).

  19. S. M. Wiederhorn, B. J. Hockey and D. E. Roberts, Phil. Mag. 28 (1973) 783.

    Google Scholar 

  20. F. W. Smith, A. F. Emery and A. S. Kobayashi, J. Appl. Mech. 34 (1967) 953.

    Google Scholar 

  21. P. B. Hirsch, A. Howie, R. B. Nicholson, D. W. Pashley and M. J. Whelan, “Electron Microscopy of Thin Crystals” (Plenum, New York, 1965).

    Google Scholar 

  22. R. Gevers, Phil. Mag. 7 (1962) 1681.

    Google Scholar 

  23. R. Gevers, J. Van Landuyt and S. Amelinckx, Phys. Status Solidi 18 (1966) 325.

    Google Scholar 

  24. B. R. Lawn, B. J. Hockey and S. M. Wiederhorn, J. Mater. Sci. 15 (1980) 1207.

    Google Scholar 

  25. C. F. Yen and R. L. Coble, J. Amer. Ceram. Soc. 55 (1972) 507.

    Google Scholar 

  26. A. G. Evans and E. A. Charles, Acta Metall. 25 (1977) 919.

    Google Scholar 

  27. J. T. A. Roberts and B. J. Wrona, J. Amer. Ceram. Soc. 56 (1973) 297.

    Google Scholar 

  28. G. Bandyopadhyay and J. T. A. Roberts, ibid. 59 (1976) 415.

    Google Scholar 

  29. F. F. Lange, ibid. 53 (1970) 290.

    Google Scholar 

  30. J. Burke, “The Kinetics of Phase Transformation in Metals” (Pergamon, London, 1965).

    Google Scholar 

  31. B. E. Deal and A. S. Grove, J. Appl. Phys. 36 (1965) 3770.

    Google Scholar 

  32. D. W. Hess and B. E. Deal, J. Electrochem. Soc. 124 (1977) 735.

    Google Scholar 

  33. B. E. Deal, ibid. 125 (1978) 576.

    Google Scholar 

  34. L. Pauling, “The Nature of the Chemical Bond” (Cornell University Press, New York, 1960).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yasutake, K., Iwata, M., Yoshii, K. et al. Crack healing and fracture strength of silicon crystals. J Mater Sci 21, 2185–2192 (1986). https://doi.org/10.1007/BF00547968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00547968

Keywords

Navigation