Skip to main content
Log in

A study of non-stoichiometry in gallium arsenide by precision lattice parameter measurements

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

An automatic method of precision lattice parameter measurement, capable of repeated measurement at intervals across single crystals with an accuracy of better than one part in 106, has been applied to gallium arsenide. The technique has been used to compare homogeneity of material grown from the melt with that prepared by vapour and liquid epitaxy, to study material grown from the melt under various pressures of arsenic, and to investigate the effect of heavy doping on the lattice parameter. The technique is shown to provide new and interesting information on defects in gallium arsenide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. E. Straumanis and C. D. Kim, Acta Cryst. 19 (1965) 256.

    Google Scholar 

  2. B. K. Chakraverty and R. W. Dreyfus, J. Appl. Phys. 37 (1966) 631.

    Google Scholar 

  3. B. Goldstein and N. Almeleh, Appl. Phys. Letters 2 (1963)130.

    Google Scholar 

  4. J. Blanc, R. H. Bube, and L. R. Weisburg, J. Phys. Chem. Solids 25 (1964) 225.

    Google Scholar 

  5. M. Fujimoto, Y. Sato, and K. Kudo, Jap. J. Appl. Phys. 6 (1967) 848.

    Google Scholar 

  6. F. A. Cunnell and C. H. Gooch, J. Phys. Chem. Solids 15 (1960) 127.

    Google Scholar 

  7. L. J. Vieland, J. Phys. Chem. Solids 21 (1961) 318.

    Google Scholar 

  8. H. Rupprecht and C. Z. Le May, J. Appl. Phys. 35 (1964) 1970.

    Google Scholar 

  9. M. S. Seltzer, J. Phys. Chem. Solids 26 (1965) 243.

    Google Scholar 

  10. E. W. Williams and D. M. Blacknell, Trans AIME 239 (1967) 387.

    Google Scholar 

  11. E. W. Williams, Solid State Communications 4 (1966) 585.

    Google Scholar 

  12. M. Toyama, Japanese J. Appl. Phys. 8 (1969) 1000.

    Google Scholar 

  13. H. Otsuka, K. Ishida, and J. Nishizawa, ibid 8 (1969) 632.

    Google Scholar 

  14. E. Muñoz, W. L. Snyder, and J. L. Moll, Appl. Phys. Letters 16 (1970) 262.

    Google Scholar 

  15. H. R. Potts and G. L. Pearson, J. Appl. Phys. 37 (1966) 5.

    Google Scholar 

  16. W. L. Bond, Acta Cryst. 13 (1960) 814.

    Google Scholar 

  17. T. W. Baker, J. D. George, B. A. Bellamy, and R. Causer, Advances in X-ray Analysis 11 (1968) 359.

    Google Scholar 

  18. T. W. Baker, J. D. George, B. A. Bellamy, and R. Causer, Research Report, AERE-R5152.

  19. E. D. Pierron and J. B. Mcneely, Advances in X-ray Analysis 12 (1968) 343.

    Google Scholar 

  20. R. E. Honig, R.C.A. Review 23 (1962) 567.

    Google Scholar 

  21. J. Van Der Boomgaard and K. Schol, Philips Res. Rep. 12 (1957) 127.

    Google Scholar 

  22. E. D. Pierron, J. W. Burd, and J. B. Mcneely, Trans. AIME 1 (1970) 639.

    Google Scholar 

  23. B. G. Cohen and M. W. Focht, Solid-State Electronics 13 (1970) 105.

    Google Scholar 

  24. A. D. Kurtz, S. A. Kulin, and B. L. Averbach, Phys. Rev. 101 (1956) 1285.

    Google Scholar 

  25. E. S. Meieran, J. Appl. Phys. 36 (1965) 2544.

    Google Scholar 

  26. M. S. Abrahams, C. J. Buiocchi, and J. J. Tietjen ibid 38 (1967) 760.

    Google Scholar 

  27. M. S. Abrahams and C. J. Buiocchi, J. Phys. Chem. Solids 28 (1967) 927.

    Google Scholar 

  28. H. Kressel, F. Z. Hawrylo, M. S. Abrahams, and C. J. Buiocchi, J. Appl. Phys. 39 (1968) 5139.

    Google Scholar 

  29. H, Kressel, H. Nelson, S. H. Mcfarlane, M. S. Abrahams, P. Le Fur, and C. J. Buiocchi, ibid 40 (1969) 3587.

    Google Scholar 

  30. D. Laister and G. M. Jenkins, J. Mater. Sci. 3 (1968) 584.

    Google Scholar 

  31. Idem, Phil Mag. 20 (1969) 361.

    Google Scholar 

  32. J. C. Brice and G. D. King, Nature 209 (1966) 1346.

    Google Scholar 

  33. N. F. Mott and R. W. Gurney, “Electronic Process in Ionic Crystals”, Oxford (1940).

  34. S. W. Kurnick, J. Chem. Phys. 20 (1952) 219.

    Google Scholar 

  35. R. A. Swalin, J. Phys. Chem. Solids 18 (1961) 290.

    Google Scholar 

  36. F. L. Vook, Proc. 7th International Conference on the Physics of Semi-coductors, Paris 1965.

  37. S. Asano and Y. Tomishima, j.Phys. Soc.Japan 13 (1958) 1126.

    Google Scholar 

  38. A. J. Bradley and A. Taylor, Proc. Roy.Soc. A159 (1937) 56.

    Google Scholar 

  39. H. W. King, J. Mater. Sci. 1 (1966) 79.

    Google Scholar 

  40. C. Hilsum and A. C. Rose-Innes, “Semiconducting III-V compounds” (Pergamon 1961).

  41. C. Kolm, S. A. Kulin, and B. L. Averbach, Phys. Rev. 108 (1957) 965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Willoughby, A.F.W., Driscoll, C.M.H. & Bellamy, B.A. A study of non-stoichiometry in gallium arsenide by precision lattice parameter measurements. J Mater Sci 6, 1389–1396 (1971). https://doi.org/10.1007/BF00549684

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549684

Keywords

Navigation