Skip to main content
Log in

The extraction of ionic conductivities and hopping rates from a.c. conductivity data

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Over a wide range of frequencies, the a.c. conductivity of ionic materials shows two regions of frequency-dependent conductivity. These are each characterized by a term 1−np ω n where K, n are constants, ω p is a fundamental frequency identified with the hopping rate and ω is the measuring frequency. This behaviour is an example of Jonscher's Law of Dielectric Response for ionic conductors. In many cases, the region of low-frequency dispersion approximates to a frequency-independent plateau which may be taken as the d.c. conductivity. In others, a significant low-frequency dispersion is present and cannot be ignored in determining the effective d.c. conductivity. A method for the extraction of d.c. conductivities, hopping rates and for estimating carrier concentration effects is described. Data for three different types of material, single-crystal LiGaO2, β″-alumina and Na/Ag β-alumina are used to illustrate the method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. D. Armstrong, T. Dickinson and P. M. Willis, Electroanalytical Chem. Interfacial Electrochem. 53 (1974) 389.

    Google Scholar 

  2. D. P. Almond, A. R. West and R. J. Grant, Solid State Commun. 44 (1982) 1277.

    Google Scholar 

  3. D. P. Almond, G. K. Duncan and A. R. West, Solid State Ionics 8 (1983) 159.

    Google Scholar 

  4. R. M. Hill and A. K. Jonscher, J. Non-Cryst. Solids 32 (1979) 53.

    Google Scholar 

  5. C. C. Hunter, PhD thesis, Aberdeen University (1981).

  6. A. K. Jonscher, Phys. Thin Films 11 (1980) 232.

    Google Scholar 

  7. R. A. Huggins, “Diffusion in Solids, Recent Developments”, edited by A. S. Nowick and J. J. Burton (Academic Press, London, 1975).

    Google Scholar 

  8. D. P. Almond and A. R. West, Phys. Rev. Lett. 47 (1981) 431.

    Google Scholar 

  9. S. J. Allen, Jr and J. P. Remeika, ibid. 33 (1976) 1478.

    Google Scholar 

  10. M. S. Whittingham and R. A. Huggins, J. Chem. Phys. 54 (1971) 4134.

    Google Scholar 

  11. A. K. Jonscher, Phil. Mag. B38 (1978) 587.

    Google Scholar 

  12. Idem, J. Mater. Sci. 16 (1981) 2037.

    Google Scholar 

  13. P. G. Bruce, A. R. West and D. P. Almond, Solid State Ionics 7 (1982) 57.

    Google Scholar 

  14. J. E. Bauerle, Phys. Chem. Solids 30 (1969) 2657.

    Google Scholar 

  15. R. M. Hill and A. K. Jonscher, Contemp. Phys. 24 (1983) 75.

    Google Scholar 

  16. J. L. Bjorkstam, P. Ferloni and M. Villa, J. Chem. Phys. 73 (1980) 2932.

    Google Scholar 

  17. J. L. Bjorkstam, M. Villa and G. C. Farrington, Solid State Ionics 5 (1981) 153.

    Google Scholar 

  18. G. C. Farrington and J. L. Briant, “Fast Ion Transport in Solids”, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North Holland, New York, 1979).

    Google Scholar 

  19. J. B. Bates, H. Engstrom, J. C. Wong, B. C. Larson, N. J. Dudney and W. E. Brundage, Solid State Ionics 5 (1981) 159.

    Google Scholar 

  20. I. Wynn Jones, Electrochim. Acta 22 (1977) 68.

    Google Scholar 

  21. I. M. Hodge, M. D. Ingram and A. R. West, formerly unpublished data (1977).

  22. R. J. Grant, I. M. Hodge, M. D. Ingram and A. R. West, J. Amer. Ceram. Soc. 60 (1977) 226.

    Google Scholar 

  23. I. M. Hodge, M. D. Ingram and A. R. West, J. Electroanal. Chem. 74 (1976) 125.

    Google Scholar 

  24. P. B. Macedo, C. T. Moynihan and R. Bose, Phys. Chem. Glass 13 (1972) 171.

    Google Scholar 

  25. D. P. Almond and A. R. West, Solid State Ionics 11 (1983) 57.

    Google Scholar 

  26. C. C. Hunter, M. D. Ingram and A. R. West, ibid. 8 (1983) 55.

    Google Scholar 

  27. J. O. Isard, J. Non-Cryst. Solids 1 (1969) 235.

    Google Scholar 

  28. M. D. Ingram and C. T. Moynihan, Solid State Ionics 6 (1982) 303.

    Google Scholar 

  29. R. E. Walstedt, R. S. Berg, J. P. Remeika, A. S. Cooper, B. E. Prescott and R. Dupree, “Fast Ion Transport in Solids”, edited by P. Vashishta, J. N. Mundy and G. K. Shenoy (North Holland, New York, 1979).

    Google Scholar 

  30. J. L. Briant and G. C. Farrington, Solid State Ionics 5 (1981) 207.

    Google Scholar 

  31. A. K. Jonscher, Nature 267 (1977) 673.

    Google Scholar 

  32. K. L. Ngai, A. K. Jonscher and C. T. White, ibid. 277 (1979) 185.

    Google Scholar 

  33. L. A. Dissado and R. M. Hill, Nature 279 (1979) 685.

    Google Scholar 

  34. S. Yoshikado, T. Ohachi, I. Taniguchi, Y. Onada, M. Watanabe and Y. Fujiki, Solid State Ionics 7 (1982) 335.

    Google Scholar 

  35. S. Yoshikado, T. Ohachi and I. Taniguchi, in Proceedings of the 4th International Conference on Solid State Ionics, Grenoble 1983, p. 1305.

  36. L. A. Dissado and R. M. Hill, private communication (1983).

  37. M. L. Wolf, J. R. Walker and C. R. A. Catlow, Solid State Ionics 13 (1983) 33.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Almond, D.P., Hunter, C.C. & West, A.R. The extraction of ionic conductivities and hopping rates from a.c. conductivity data. J Mater Sci 19, 3236–3248 (1984). https://doi.org/10.1007/BF00549810

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00549810

Keywords

Navigation