Skip to main content
Log in

Crystal structure transformations of alkali sulphates, nitrates and related substances: Thermal hysteresis in reversible transformations

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Reversible phase transformations of alkali sulphates, alkali nitrates, and various other inorganic substances have been studied by making use of differential thermal analysis. Thermodynamic and kinetic data on the transformations have been obtained. Thermal hysteresis in reversible transformations has been examined, and the magnitude of hysteresis is shown to be related to the volume changes accompanying the transformations. The origin of hysteresis probably lies in the strain energies associated with the transformations. Approximate strain energies have been estimated from the analysis of the DTA data. On the basis of considerations from the theory of elasticity, it is possible to show that the strain energy is a function of ΔV. Thermodynamic considerations show that the strain energy is related to ΔT×ΔS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. F. Wells, “Structural Inorganic Chemistry” (Clarendon Press, Oxford, 1962).

    Google Scholar 

  2. L. Pauling, “Nature of the Chemical Bond” (Cornell University Press, Ithaca, New York, 1960).

    Google Scholar 

  3. H. J. Borchardt, J. Chem. Ed. 33 (1956) 103.

    Google Scholar 

  4. S. Gordon, J. Chem. Ed. 40 (1963) A87.

    Google Scholar 

  5. J. A. Pask, University of California, Institute of Research Publications, Series 18, Issue 3 (1952).

  6. R. L. N. Sastry, S. R. Yoganarasimhan, P. N. Mehrotra, and C. N. R. Rao, J. Inorg. Nucl. Chem. 28 (1966) 1165.

    Google Scholar 

  7. A. Arell, Ann. Acad. Sci. Fenn. AVI, No. 101 (1962).

  8. A. Arell and M. Varteva, Ann. Acad. Sci. Fenn. AVI, No. 88 (1961).

  9. A. J. Majumdar, H. A. Mckinstry, and R. Roy, J. Phys. Chem. Solids 25 (1964) 1487.

    Google Scholar 

  10. A. J. Majumdar and R. Roy, J. Phys. Chem. 69 (1965) 1684.

    Google Scholar 

  11. K. J. Rao, G. V. S. Rao, and C. N. R. Rao, J. Phys. Chem. Solids (in press).

  12. H. J. Borchardt and F. Daniels, J. Am. Chem. Soc. 79 (1957) 41.

    Google Scholar 

  13. T. Forland and J. Krogh-Moe, Acta Chem. Scand. 11 (1957) 565.

    Google Scholar 

  14. L. K. Frevel, J. Chem. Phys. 8 (1940) 290.

    Google Scholar 

  15. H. Fischmeister, Acta Cryst. 7 (1954) 776.

    Google Scholar 

  16. W. H. Zachariasen and G. E. Zeigler, Z. Krist. 81 (1932) 92.

    Google Scholar 

  17. M. A. Bredig, J. Am. Chem. Soc. 63 (1941) 2533.

    Google Scholar 

  18. R. Moreau, Bull. Soc. Roy. Sci. (Liege) 32 (1963) 252.

    Google Scholar 

  19. M. Bernard and R. Hocart, Bull. Soc. Franc. mineral. Crist. 84 (1961) 396.

    Google Scholar 

  20. F. P. Goerder, Proc. Natl. Acad. Sci. 13 (1927) 793.

    Google Scholar 

  21. A. Ogg, Phil. Mag. 5 (1) (1928) 354.

    Google Scholar 

  22. H. F. Fischmeister, Monotsh. Chem. 93 (1962) 420.

    Google Scholar 

  23. J. P. Coughlin, J. Am. Chem. Soc. 77 (1955) 868.

    Google Scholar 

  24. H. F. Fischmeister, Z. Physik. Chem. 7 (1956) 94.

    Google Scholar 

  25. F. C. Kracek, J. Phys. Chem. 33 (1929) 1281.

    Google Scholar 

  26. F. C. Kracek and R. E. Gibson, J. Phys. Chem. 34 (1930) 188.

    Google Scholar 

  27. C. Mazieres, Ann. Chim. (1961) 576.

  28. F. C. Kracek and C. J. Ksanda, J. Phys. Chem. 34 (1930) 1741.

    Google Scholar 

  29. M. A. Bredig, J. Phys. Chem. 47 (1943) 587.

    Google Scholar 

  30. M. A. Bredig, J. Phys. Chem. 49 (1945) 543.

    Google Scholar 

  31. V. M. Goldschmidt, “Geochemische Verteilungsgesetze,” Volume VII (Oslo, 1926), p. 105.

  32. R. E. Weston Jr, and T. F. Brodasky, J. Chem. Phys. 27 (1957) 683.

    Google Scholar 

  33. L. Pauling, Phys. Rev. 30 (1930) 430.

    Google Scholar 

  34. M. J. Buerger, Fortschr. Miner. 39 (1961) 9.

    Google Scholar 

  35. F. C. Kracek and E. Posnja, J. Am. Chem. Soc. 53 (1931) 1183.

    Google Scholar 

  36. F. C. Kracek, ibid 53 (1931), 2609.

    Google Scholar 

  37. F. C. Kracek, E. Posnjak, and S. B. Hendricks, ibid, 3339.

    Google Scholar 

  38. P. E. Tahvonen, Ann. Acad. Sci. Fenn. Series AI, No. 43 (1946).

  39. M. Kantola and E. Vilhonen, Ann. Acad. Sci. Fenn. Series AVI, No. 54 (1960).

  40. F. C. Kracek, J. Phys. Chem. 34 (1930) 225.

    Google Scholar 

  41. F. C. Kracek, T. F. W. Barth, and C. J. Ksanda, Phys. Rev. 40 (1932) 1034.

    Google Scholar 

  42. C. Finbak and O. Hassel, Z. Phys. Chem. B37 (1937) 75.

    Google Scholar 

  43. F. W. Barth, Z. Phys. Chem. B43 (1939) 448.

    Google Scholar 

  44. R. N. Brown and A. C. Mclaren, Acta Cryst. 15 (1962) 974.

    Google Scholar 

  45. C. Finbak and O. Hassel, J. Chem. Phys. 5 (1937) 460.

    Google Scholar 

  46. S. Shozo, N. Shoichiro, and F. Shimichi, J. Phys. Soc. Japan 13 (1958) 1549.

    Google Scholar 

  47. A. L. Khodakov and E. Z. Mirskaya, Krystallographia 7 (1962) 477.

    Google Scholar 

  48. I. S. Zheludev and A. S. Sonin, Izvest. Acad. Nauk. SSSR Ser. Fiz. 22 (1958) 1441.

    Google Scholar 

  49. A. Y. Dantsiger, Nauchn. Konf. Aspirantov, (1962) 75.

  50. H. Frohlich, Archiv. Sci. 10 Spec. No. 5–6 (1957).

  51. R. K. Khanna, J. Lingscheid, and J. C. Decius, Spectrochim. Acta 20 (1964) 1109.

    Google Scholar 

  52. G. B. Ravich and B. N. Ergov, Zhur. Neorg Khim 5 (1960) 2603.

    Google Scholar 

  53. S. Glasstone, “Thermodynamics for Chemists” (Van Nostrand, New York, 1958).

    Google Scholar 

  54. J. W. Menary, A. R. Ubbelohde, and I. Woodward, Proc. Roy. Soc. (London) A208 (1961) 158.

    Google Scholar 

  55. A. J. Majumdar and R. Roy, J. Phys. Chem. 63 (1959) 1858.

    Google Scholar 

  56. A. Arell, Ann. Acad. Sci. Fenn. Series AVI, No. 57 (1960).

  57. S. Tanisaki, J. Phys. Soc. Japan 18 (1963) 1181.

    Google Scholar 

  58. R. W. G. Wyckoff, “Crystal Structures” (Interscience, New York, 1960).

    Google Scholar 

  59. E. M. Levin, R. S. Roth and J. B. Martin, Am. Mineral. 46 (1961) 1035.

    Google Scholar 

  60. C. J. Schneer and R. W. Whiting, Am. Mineral. 48 (1963) 737.

    Google Scholar 

  61. A. R. Ubbelohde, Quart. Rev. 11 (1957) 246.

    Google Scholar 

  62. A. H. Cottrell, “Dislocations and Plastic Flow in Crystals” (Clarendon press, Oxford, 1963).

    Google Scholar 

  63. K. Schäfer, Z. Physical Chem. 42B (1939) 127.

    Google Scholar 

  64. P. Dinichert, Helv. Physica Acta 17 (1944) 389.

    Google Scholar 

  65. F. C. Frank and K. Wirtz, Naturwiss. 42 (1938) 687.

    Google Scholar 

  66. D. C. Thomas and L. A. K. Staveley, J. Chem. Soc. 1420 (1951) 2572.

    Google Scholar 

  67. R. C. Garvie, J. Phys. Chem. 69 (1965) 1238.

    Google Scholar 

  68. H. G. Van Bueren, “Imperfections in Crystals” (North Holland, Amsterdam, 1960), Ch. IV, p. 94.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Taken in part from Ph.D. thesis of K. J. Rao, to be submitted to the Indian Institute of Technology, Kanpur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, K.J., Rao, C.N.R. Crystal structure transformations of alkali sulphates, nitrates and related substances: Thermal hysteresis in reversible transformations. J Mater Sci 1, 238–248 (1966). https://doi.org/10.1007/BF00550172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550172

Keywords

Navigation