Skip to main content
Log in

Creep of germanium

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Isothermal creep, as well as the response to incremental stress and temperature changes, were studied in germanium single crystals oriented for double slip, in the range 470 to 700° C. The stress-sensitivity of the compressive creep rate δ In έ/δ In σ is numerically close to 3 at low strains, but increases appreciably with deformation. This effect, and a similar strain dependence of the activation energy as determined by thermal cycling, are explained in terms of the curvature of the creep curves on the basis of Boltzmann's superposition principle. The Peierls barrier seems to be an important obstacle to dislocation movement at relatively low temperatures, when S-shaped creep curves are observed. Other barriers, with greater heights, seem to become increasingly effective above about 550° C. Although dislocation loops, and the formation and break-up of dipoles were observed by TEM, recovery mechanisms involving self-diffusion did not appear to make a substantial contribution to the creep within the range of temperatures used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Alexander and P. Haasen, Solid State Physics 22 (1968) 27.

    Google Scholar 

  2. K. Berner and H. Alexander, Acta Metallurgica 15 (1967) 933.

    Google Scholar 

  3. H. Schaumburg, Phys. Stat. Sol. 40 (1970) K1.

    Google Scholar 

  4. V. I. Nikitenko, M. M. Myshlyaev, and V. G. Eremenko, “Dinamika Dislokatsii” (Ak. Nauk. Ukr. SSR, Kharkov, 1968) p. 84.

    Google Scholar 

  5. J. R. Patel and P. E. Freeland, J. Appl. Phys. 42 (1971) 3298.

    Google Scholar 

  6. P. Feltham, Phys. Letts. 33A (1970) 239.

    Google Scholar 

  7. L. Gerward, Phys. Stat. Sol. 2a (1970) 797.

    Google Scholar 

  8. F. Calzecchi, A. Gardini, and P. Gondi, Nuovo. Cim. 50 (1967) 263.

    Google Scholar 

  9. V. F. Miuskov, “Dinamika Dislokatsii” (Ak. Nauk. Ukr. SSR, Kharkov, 1968) p. 204.

    Google Scholar 

  10. M. M. Myshlyaev, V. I. Nikitenko, and V. I. Nesterenko, Phys. Stat. Sol. 36 (1969) 89.

    Google Scholar 

  11. R. Wagatsuma, K. Sumino, W. Uchida, and S. Yamamoto, J. Appl. Phys. 42 (1970) 222.

    Google Scholar 

  12. K. Kojima and K. Sumino, Crystal Lattice Defects 2 (1971) 147, 159.

    Google Scholar 

  13. D. B. Holt and A. E. Dangor, Phil. Mag. 8 (1963) 1921.

    Google Scholar 

  14. V. G. Govorkov, V. L. Indenbom, V. S. Papkov, and V. R. Regal, Sov. Phys. Sol. State 6 (1964) 802.

    Google Scholar 

  15. R. L. Bell and W. Bonfield, Pail. Mag. 9 (1964) 9.

    Google Scholar 

  16. P. Feltham, ibid 21 (1970) 765.

    Google Scholar 

  17. R. Labusch, Festkörperphysik 8 (1968) 268.

    Google Scholar 

  18. P. Feltham, Phys. Stat. Sol. 30 (1968) 135.

    Google Scholar 

  19. D. Brown, G. Chaudhri, and P. Feltham, Phil. Mag. 24 (1971) 213.

    Google Scholar 

  20. G. Chaudhri, Ph.D. Thesis (Brunel University, London 1971) p. 14.

    Google Scholar 

  21. B. A. Irving, Brit. J. Appl. Phys. 12 (1961) 92.

    Google Scholar 

  22. G. R. Booker, and R. Stickler, ibid, 13 (1962) 446.

    Google Scholar 

  23. M. M. Shea, L. E. Hendrickson, and L. A. Heldt, J. Appl. Phys. 37, (1966) 4572.

    Google Scholar 

  24. P. Feltham and G. Chaudhri, Phys. Stat. Sol. 7a (1971) K59.

    Google Scholar 

  25. N. Balasubramanian and J. C. M. Li, J. Mater. Sci. 5 (1970) 434.

    Google Scholar 

  26. P. Haasen, J. de Physique 27 (1966) C3–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaudhri, G., Feltham, P. Creep of germanium. J Mater Sci 7, 1161–1167 (1972). https://doi.org/10.1007/BF00550199

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550199

Keywords

Navigation