Skip to main content
Log in

Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The conductivity of several single crystal and polycrystalline Y2O3-ZrO2 samples has been studied by complex impedance and four-probe direct current techniques. For single crystals only one arc, due to lattice conductivity, was observed in the complex impedance representation. Polycrystalline materials showed a second arc, due to grain boundary resistance, the extent of which decreased as the impurity concentration was reduced and as the electrolyte microstructure improved. The activation energies for the volume and total conductivity of the purest polycrystalline samples were similar and agreed with those for the single crystals. These values, however, decreased by 20 to 25 kJ mol−1 on going from low (<550° C) to high (>850° C) temperatures. The change in the activation energy with temperature is thought to be due to a gradual transition between an association region, where vacancies are bound to dopant cations, and a dissociation region where vacancies are free and mobile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. H. Etsell and S. N. Flengas, Chem. Rev. 70 (1970) 339.

    Google Scholar 

  2. D. Yuan and F. A. Kröger, J. Electrochem. Soc. 116 (1969) 594.

    Google Scholar 

  3. H. Obayashi and T. Kudo, in “Solid State Chemistry of Energy Conversion and Storage”, Advances in Chemistry Series, Vol. 163, edited by J. B. Goodenough and M. S. Whittingham (The American Chemical Society, Washington, D.C., 1977) p. 316.

    Google Scholar 

  4. N. M. Beekmans and L. Heyne, Electrochim. Acta 21 (1976) 303.

    Google Scholar 

  5. M. Kleitz, H. Bernard, E. Fernandez and E. Shouler, in “Advances in Ceramics”, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981) p. 310.

    Google Scholar 

  6. J. A. Kilner and B. C. H. Steele, in “Nonstoichiometric Oxides”, edited by O. T. Sørensen (Academic Press, London, 1981) p. 233.

    Google Scholar 

  7. E. Schouler, PhD thesis, Grenoble, France (1980).

  8. J. E. Bauerle and J. Hrizo, J. Phys. Chem. Solids 30 (1969) 565.

    Google Scholar 

  9. M. V. Inozemtsev and M. V. Perfil'ev, Elektrokhimiya 11 (1975) 1031.

    Google Scholar 

  10. M. J. Verkerk, A. J. A. Winnubst and A. J. Burggraaf, J. Mater. Sci. 17 (1982) 3113.

    Google Scholar 

  11. M. V. Inozemtsev, M. V. Perfil'ev and A. S. Lipilin, Elektrokhimiya 10 (1974) 1471.

    Google Scholar 

  12. A. I. Ioffe, M. V. Inozemtsev, A. S. Lipilin, M. V. Perfil'ev and S. V. Karpachov, Phys. Status Solidi (a) 30 (1975) 87.

    Google Scholar 

  13. M. J. Verkerk, B. J. Middlehuis and A. J. Burggraaf, Solid State Ionics 6 (1982) 159.

    Google Scholar 

  14. A. L. Dragoo, C. K. Chiang and A. D. Franklin, ibid. 7 (1982) 249.

    Google Scholar 

  15. P. Abelard and J. F. Baumard, Phys. Rev. B 26 (1982) 1005.

    Google Scholar 

  16. C. Pascual, J. R. Jurado and P. Duran, J. Mater. Sci. 18 (1983) 1315.

    Google Scholar 

  17. S. P. S. Badwal, J. Mater. Sci. 18 (1983) 3117.

    Google Scholar 

  18. Idem, J. Electroanal. Chem. in press.

  19. S. P. S. Badwal, M. J. Bannister and W. G. Garrett, Proceedings of the Second Zirconia Technologies Conference, Stuttgart, 21–23 June 1983, edited by A. H. Heuer, N. Clausser and M. Ruble (The American Ceramic Society, Columbus, Ohio, 1984).

    Google Scholar 

  20. R. E. W. Casselton, Phys. Status Solidi (a) 2 (1970) 571.

    Google Scholar 

  21. Y. -T. Tsai and D. H. Whitmore, Solid State Ionics 7 (1982) 129.

    Google Scholar 

  22. T. Van Dijk and A. J. Burggraaf, Phys. Status Solidi (a) 63 (1981) 229.

    Google Scholar 

  23. R. H. J. Hannink, private communication (1983).

  24. J. A. Kilner and C. D. Waters, Solid State Ionics 6 (1982) 253.

    Google Scholar 

  25. A. S. Nowick and D. S. Park, in “Superionic Conductors”, edited by G. Mahen and W. Roth (Plenum Press, New York, 1976) p. 395.

    Google Scholar 

  26. Da Yu Wang, D. S. Park, J. Griffith and A. S. Nowick, Solid State Ionics 2 (1981) 95.

    Google Scholar 

  27. R. E. Carter and W. L. Roth, in “Electromotive Force Measurements in High Temperature Systems”, edited by C. B. Alcock (Elsevier, Amsterdam, 1968) p. 125.

    Google Scholar 

  28. H. J. Rossell, in “Advances in Ceramics”, Vol. 3, edited by A. H. Heuer and L. W. Hobbs (The American Ceramic Society, Columbus, Ohio, 1981) p. 47.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Badwal, S.P.S. Electrical conductivity of single crystal and polycrystalline yttria-stabilized zirconia. J Mater Sci 19, 1767–1776 (1984). https://doi.org/10.1007/BF00550246

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550246

Keywords

Navigation