Skip to main content
Log in

Some structure-property relationships in oriented polychloroprene

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The deformation, yield and brittle fracture properties of an 84% trans-polychloroprene (Neoprene W) were determined at −180°C for samples prepared with a range of microstructures (including amorphous, row-nucleated and spherulitic morphologies) and a range of pre-orientations from 0 to 300%. Pre-orientation was carried out at room temperature and crystallisation, where required, at −5°C. The degree of crystallinity was low, in the region of 18%, and the crystalline morphology was monitored by thin film electron microscopy and by wide angle X-ray analysis.

The results indicate that in this temperature range a row-nucleated (“type I”) morphology produces little modification of the amorphous properties at a given pre-extension except to inhibit premature fracture after yield. In contrast a distorted spherulitic (“type II”) morphology, raises yield stresses and strains above those for the amorphous material and produces post-yield strain hardening not observed with the other microstructures.

In all cases, pre-orientation exerts a profound effect on elastic moduli, yield stresses and the brittle-ductile fracture transition. Some tentative mechanisms are proposed to explain these features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. H. Andrews, Proc. Roy. Soc. A270 (1962) 232.

    Google Scholar 

  2. Idem, ibid A277 (1964) 562.

    Google Scholar 

  3. P. E. Reed, Ph.D. Thesis, “The influence of crystalline texture on the tensile properties of natural rubber” (University of London, 1970).

  4. E. H. Andrews, New Scientist, 42 (1969) 360.

    Google Scholar 

  5. J. T. Maynard and W. E. Mochel, J. Polymer Sci. 18 (1955) 227.

    Google Scholar 

  6. V. Gomela and L. Megarskaya, Polymer Sci. USSR 10 (1968) 1196.

    Google Scholar 

  7. P. E. Reed, J. Mater. Sci. 1 (1966) 91.

    Google Scholar 

  8. P. M. Gorbunov, Polymer Sci. USSR 11 (1969) 436

    Google Scholar 

  9. A. Keller and M. J. Machin, J. Macromol. Sci. (Phys.) B1 (1) (1967) 41.

    Google Scholar 

  10. H. D. Keith, F. J. Padden, and R. G. Vadinsky, J. Appl. Phys. 37 (1966) 4027.

    Google Scholar 

  11. A. J. Pennings and A. M. Kiel, Kolloid-Z. 205 (1965) 160.

    Google Scholar 

  12. P. J. Owen, Ph.D. Thesis, “Crystallization in Thin Films of Natural Rubber” (University of London, 1970).

  13. H. Yoshimoto, S. Sagae, M. Matsuo, S. Vemura and Y. Ishida, Kolloid-Z. 236 (1970) 116.

    Google Scholar 

  14. C. W. Bunn, Proc. Roy. Soc. 180A (1944) 41.

    Google Scholar 

  15. W. A. Krigbaum, J. V. Dawkins, and G. H. Via, J. Polymer Sci. A2, 7 (1969) 257.

    Google Scholar 

  16. H. G. Gibbs, Thesis, “The tensile failure of uniaxially oriented unplasticised PVC” (The College of Aeronautics, Cranfield, 1966).

    Google Scholar 

  17. E. H. Andrews and P. E. Reed, J. Polymer Sci. B (Polymer Letters) 5 (1967) 317.

    Google Scholar 

  18. E. H. Andrews and L. Bevan, to be published.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrews, E.H., Reeve, B. Some structure-property relationships in oriented polychloroprene. J Mater Sci 6, 547–557 (1971). https://doi.org/10.1007/BF00550309

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550309

Keywords

Navigation