Skip to main content
Log in

Creep of polycrystalline sodium chloride containing a dispersion of alumina

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The creep of polycrystalline NaCl contaning a fine dispersion of Al2O3 particles is analysed in terms of dependence on stress, temperature, volume fraction and size of dispersion, and grain size of samples. Compressive creep experiments around 0.8 Tm show that the dispersion inhibits diffusive creep. The creep is characterized by a threshold stress above which the creep rate increased linearly with applied stress. The threshold stress decreases with increasing temperature and is proportional to the volume fraction of the dispersion in agreement with a model proposed by Burton. The activation energy corrected for the temperature dependence of the threshold stress falls within a narrow range consistent with grain-boundary diffusion of chlorine in sodium chloride. The grain-size dependence is not consistent with a modified diffusive creep model but it is suggested that it may be controlled by inhibited grain-boundary sliding according to a new model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. R. N. Nabarro, in “Report of a Conference on the Strength of Solids” (Phys. Soc. London, 1948) p. 75.

  2. C. Herring, J. Appl. Phys. 21 (1950) 437.

    Google Scholar 

  3. R. L. Coble, ibid. 36 (1963) 2412.

    Google Scholar 

  4. M. F. Ashby, Surface Sci. 31 (1972) 498.

    Google Scholar 

  5. B. Burton, “Diffusional Creep of Polycrystalline Materials” (Trans. Tech. Publications, Aedermannsdorf 1977).

    Google Scholar 

  6. L. E. Raraty, J. Nucl. Mater. 20 (1966) 344.

    Google Scholar 

  7. P. Greenfield and W. Vickers, ibid. 22 (1967) 77.

    Google Scholar 

  8. W. Vickers and P. Greenfield, ibid. 24 (1967) 249.

    Google Scholar 

  9. Idem, ibid. 27 (1968) 73.

    Google Scholar 

  10. R. L. Squires, R. T. Weiner and M. Phillips, ibid. 8 (1963) 77.

    Google Scholar 

  11. F. K. Sautter and E. S. Chen, in “Oxide Dispersion Strengthening” (Gordon and Breach, New York 1966) p. 495.

    Google Scholar 

  12. B. Burton, Met. Sci. J. 5 (1971) 11.

    Google Scholar 

  13. J. R. Blachere, Amer. Ceram. Soc.

  14. R. K. Sinha, M.S. Thesis, University of Pittsburgh (1977).

  15. M. F. Ashby, Scripta Met. 3 (1969) 837.

    Google Scholar 

  16. J. E. Harris, Met. Sci. J. 7 (1973) 1.

    Google Scholar 

  17. B. Burton, Mat. Sci. Eng. 10 (1972) 9.

    Google Scholar 

  18. R. K. Sinha, Ph.D. Thesis, University of Pittsburgh (1978).

  19. J. E. May and D. Turnbull, Trans. Met. Soc. AIME 212 (1958) 769.

    Google Scholar 

  20. T. Gladman and F. B. Pickering, J.I.S.I. 2051 (1967) 653.

    Google Scholar 

  21. R. K. Sinha and J. R. Blachere, Scripta Met. 13 (1979) 41.

    Google Scholar 

  22. R. T. Pascoe, Central Electricity Laboratory, Lab. Memo no. R.D/L/M 342, Job no. VM 274 (1971).

  23. G. B. Gibbs, Mat. Sci. Eng. 2 (1968) 269.

    Google Scholar 

  24. T. M. Lifshitz, Sov. Phys. J.E.T.P. 117 (1963) 909.

    Google Scholar 

  25. R. Raj and M. F. Ashby, Met. Trans. 2 (1971) 1113.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, R.K., Blachere, J.R. Creep of polycrystalline sodium chloride containing a dispersion of alumina. J Mater Sci 15, 1772–1780 (1980). https://doi.org/10.1007/BF00550597

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00550597

Keywords

Navigation