Skip to main content
Log in

Conductivity and creep in acceptor-dominated polycrystalline Al2O3

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Ionic and electronic conductivity and compressive creep of hot-pressed polycrystalline acceptor-dominated Al2O3 were measured as a function of oxygen partial pressure and grain size varying from 3 to 200 μm. Hole conduction shows a slight preference for grainboundaries; ionic conduction is slightly hindered by grain boundaries, indicating that fast oxygen grain-boundary diffusion involving charged species does not occur. Conductivity and creep are accounted for on the basis of a model in which there is fast grain-boundary migration by a neutral oxygen species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Gordon, J. Amer. Ceram. Soc. 56 (1973) 147.

    Google Scholar 

  2. Idem, in “Mass Transport Phenomena in Ceramics”, edited by A. R. Cooper and A. H. Heuer (Plenum Press, New York, 1975) p. 445.

    Google Scholar 

  3. F. A. Mohamed and T. G. Langdon, Met. Trans. 5 (1974) 2339.

    Google Scholar 

  4. P. A. Lessing and R. S. Gordon, J. Mater. Sci. 12 (1977) 2291.

    Google Scholar 

  5. G. W. Hollenberg and R. S. Gordon, J. Amer. Ceram. Soc. 56 (1973) 140.

    Google Scholar 

  6. B. V. Dutt, J. P. Hurrell and F. A. Kröger, ibid 58 (1975) 421.

    Google Scholar 

  7. B. V. Dutt and F. A. Kröger, ibid 48 (1975) 474.

    Google Scholar 

  8. S. K. Mohapatra and F. A. Kröger, ibid 60 (1977) 141.

    Google Scholar 

  9. Idem, ibid 60 (1977) 381.

    Google Scholar 

  10. M. I. Mendelson, ibid 52 (1969) 443.

    Google Scholar 

  11. J. Yee and F. A. Kröger, ibid 56 (1973) 189.

    Google Scholar 

  12. W. R. Cannon, thesis, Stanford University (1971).

  13. W. C. Johnson and D. F. Stein, J. Amer. Ceram. Soc. 58 (1975) 485.

    Google Scholar 

  14. R. I. Taylor, J. P. Coad and R. J. Brook, ibid 57 (1974) 539.

    Google Scholar 

  15. S. S. C. Tong and J. P. Williams, ibid 53 (1970) 58.

    Google Scholar 

  16. R. I. Taylor, J. P. Coad and A. E. Hughes, ibid 59 (1976) 374.

    Google Scholar 

  17. K. Kitazawa and R. L. Coble, ibid 57 (1974) 245.

    Google Scholar 

  18. O. T. özkan and A. J. Moulson, Brit. J. Appl. Phys. (J. Phys. D) 3 (1970) 983.

    Google Scholar 

  19. F. R. N. Nabarro, Phil. Mag. 16 (1967) 231.

    Google Scholar 

  20. W. R. Cannon and O. D. Sherby, J. Amer. Ceram. Soc. 56 (1973) 157.

    Google Scholar 

  21. W. R. Cannon and O. D. Sherby, ibid 60 (1977) 44.

    Google Scholar 

  22. R. M. Cannon and R. L. Coble, in “Deformation in Ceramic Materials”, edited by B. C. Bradt and R. E. Tressler (Plenum Press, New York, 1975) pp. 61–100.

    Google Scholar 

  23. R. Chang, J. Appl. Phys. 31 (1960) 484.

    Google Scholar 

  24. H. Conrad, J. Amer. Ceram. Soc. 48 (1965) 195.

    Google Scholar 

  25. E. I. Akselrod, I. I. Visnevskii, E. R. Dobrovinskaya and N. D. Talyanskaya, Sov. Phys. Dokl. 18 (1974) 683.

    Google Scholar 

  26. Y. Oishi and W. D. Kingery, J. Chem. Phys. 33 (1960) 480.

    Google Scholar 

  27. F. A. Kroger, “The Chemistry of Imperfect Crystals”, Vol. 3 (North-Holland, American Elsevier, New York, 1974) pp. 16–18.

    Google Scholar 

  28. S. K. Mohapatra and F. A. Kröger, J Amer. Ceram. Soc. 61 (1978) 106.

    Google Scholar 

  29. G. J. Dienes, D. O. Welch, C. R. Fischer, R. D. Hatcher, O. Lazareth and M. Samberg, Phys. Rev. B11 (1975) 3060.

    Google Scholar 

  30. S. K. Mohapatra, S. Tiku and F. A. Kröger, J. Amer. Ceram. Soc. 62 (1979).

  31. A. E. Paladino and W. D. Kingery, J. Chem. Phys. 37 (1962) 957.

    Google Scholar 

  32. M. S. Seltzer and J. B. Wagner Jr, J. Phys. Chem. Solids 26 (1965) 233.

    Google Scholar 

  33. H. H. Woodbury and R. B. Hall, Phys. Rev. 157 (1967) 641.

    Google Scholar 

  34. P. M. Borsenberger and D. A. Stevenson, J. Phys. Chem. Solids 29 (1968) 1277.

    Google Scholar 

  35. V. Kumar and F. A. Kröger, J. Solid State Chem. 3 (1971) 387.

    Google Scholar 

  36. D. Hayes, D. W. Budworth and J. P. Roberts. Trans. Brit. Ceram. Soc. 62 (1963) 507.

    Google Scholar 

  37. D. J. Reed and B. J. Wuensch, Amer. Ceram. Soc. Bull. 56 (1977) 298, paper 101-B-77.

    Google Scholar 

  38. K. Hirota and W. Komatsu, J. Amer. Ceram. Soc. 60 (1977) 108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hou, L.D., Tiku, S.K., Wang, H.A. et al. Conductivity and creep in acceptor-dominated polycrystalline Al2O3 . J Mater Sci 14, 1877–1889 (1979). https://doi.org/10.1007/BF00551027

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00551027

Keywords

Navigation