Skip to main content
Log in

Principles of photoelectrochemical, solar energy conversion

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Photoelectrochemical devices for conversion of solar energy into both electrical energy and chemical energy are discussed with emphasis on how the various material properties of the photoactive electrodes influence device efficiency and stability. The similarity between photoelectrochemical cells (PECs) and solid state devices is used to model their behaviour and optimize such parameters as band gap, doping level, minority carrier lifetime, etc. A model is presented which calculates the electron affinity of any semiconductor and allows the prediction of the open circuit voltage of wet photovoltaic cells and optimum biasing forchemical producing cells. The effects of absorbed ions at the semiconductor/electrolyte interface are reviewed. The temperature dependence of the energy levels in the semiconductor and the electrolyte are considered and the implications of these results to operation of PECs at elevated temperature are discussed. The major differences between PECs and solid state devices are the stability considerations. The thermodynamics of this problem is discussed. Other important degradation mechanisms and some solutions to these problems are reviewed. Finally, a prognosis of the future of this field is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Becquerel, Compt. Rend. Acad. Sci. Paris 9 (1839) 561.

    Google Scholar 

  2. W. H. Brattain and C. G. B. Garrett, Bell System Tech. J. 34 (1955) 129.

    Google Scholar 

  3. H. Gerischer, in “Advances in Electrochemistry and Electrochemical Engineering”, edited by P. Delahay (Interscience, New York, 1961) p. 139.

    Google Scholar 

  4. Idem, in “Physical Chemistry: An Advanced Treatise”, Vol. 9A, edited by H. Eyring, D. Henderson and W. Jost (Academic Press, New York, 1970).

    Google Scholar 

  5. A. Fujishima, K. Honda and S. Kikuchi, J. Chem. Soc. Japan 72 (1969) 108.

    Google Scholar 

  6. A. Fujishima and K. Honda, Nature 238 (1972) 37; Bull. Chem. Soc. Japan 44, (1971) 1148; J. Chem. Soc. Japan 74 (1971) 355.

    Google Scholar 

  7. M. D. Archer, J. Appl. Electrochem. 5 (1975) 17.

    Google Scholar 

  8. W. A. Gerrard and L. M. Rouse, J. Vac. Sci. Technol. 15 (1978) 1155.

    Google Scholar 

  9. J. Manassen, D. Cahen and G. Hodes, Nature 263 (1976) 97.

    Google Scholar 

  10. A. J. Nozik, Ann. Rev. Phys. Chem. 29 (1978) 189.

    Google Scholar 

  11. A. J. Bard, American Ceramic Society Fall Meeting, Dallas, Texas, 19 September (1978).

  12. A. J. Nozik, 2nd International Conference on Photochemical Conversion and Storage of Solar Energy Cambridge, England, 10 August (1978).

  13. F. Lohmann, Z. Naturforsch. A. 22 (1967) 843.

    Google Scholar 

  14. H. Gerischer, J. Electroanal. Chem. 82 (1977) 133.

    Google Scholar 

  15. A. J. Bard and M. S. Wrighton, J. Electrochem. Soc. 124 (1977) 1706.

    Google Scholar 

  16. M. A. Butler, J. Appl. Phys. 48 (1977) 1914.

    Google Scholar 

  17. A. B. Bocarsly, J. M. Bolts, P. G. Cummins and M. S. Wrighton, Appl. Phys. Letters 31 (1977) 568.

    Google Scholar 

  18. J. O. M. Bockris and A. K. N. Reddy, “Modern Electrochemistry”, Vol. 2 (Plenum, New York, 1970) p. 862.

    Google Scholar 

  19. J. Hoare, “The Electrochemistry of Oxygen” (Wiley, New York, 1968) p. 82.

    Google Scholar 

  20. R. E. Schwerzel, E. W. Brooman, R. A. Craig and V. E. Wood, in “Semiconductor Liquid-Junction Solar Cells”, edited by A. Heller (Electrochemical Society, Princeton, 1977) p. 293.

    Google Scholar 

  21. M. T. Thekaekara, Survey of Quantitative Data on Solar Energy and Its Spectral Distribution, in Proceedings of Conference Compiles (Cooperation Mediterranienne Sur l'Energie Solaire) Dahran, Saudi Arabia (November 1975).

  22. H. J. Hovel, “Semiconductors and Semimetals”, Vol. II (Academic, New York, 1975).

    Google Scholar 

  23. R. K. Quinn, R. D. Nasby and R. J. Baughman, Mat. Res. Bull. 11 (1976) 1011.

    Google Scholar 

  24. W. W. Gartner, Phys. Rev. 116 (1959) 84.

    Google Scholar 

  25. J. H. Kennedy and K. W. Frese, J. Electrochem. Soc. 125 (1978) 709.

    Google Scholar 

  26. R. H. Wilson, J. Appl. Phys. 48 (1977) 4292.

    Google Scholar 

  27. D. Laser and A. J. Bard, J. Electrochem. Soc. 123 (1976) 1828, 1833, 1837.

    Google Scholar 

  28. M. A. Butler, J. Electrochem. Soc. 126 (1979) 338.

    Google Scholar 

  29. C. E. Derrington, W. S. Godek, C. A. Castro and A. Wold, Inorg. Chem. 17 (1978) 977.

    Google Scholar 

  30. D. Dobos, “Electrochemical Data” (Elsevier, New York, 1975).

    Google Scholar 

  31. A. K. Vijh, “Electrochemistry of Metals and Semiconductors” (Dekker, New York, 1973).

    Google Scholar 

  32. D. S. Ginley and M. A. Butler, Electrochemical Society Meeting, Boston, Mass. 5–6 November (1979).

  33. M. A. Butler and D. S. Ginley, J. Electrochem. Soc. 125 (1978) 228.

    Google Scholar 

  34. N. B. Hannay, “Semiconductors” (Reinhold, New York, 1959).

    Google Scholar 

  35. D. S. Ginley and M. A. Butler, J. Electrochem. Soc. 125 (1978) 1968.

    Google Scholar 

  36. A. H. Nethercot, Phys. Rev. Letters 33 (1974) 1088.

    Google Scholar 

  37. R. T. Poole, D. R. Williams, J. D. Riley, J. G. Jenkins, J. Liesegang and R. C. G. Leckey, Chem. Phys. Letters 36 (1975) 401.

    Google Scholar 

  38. H. Hotop and W. C. Lineberger, J. Phys. Chem. Ref. Data 4 (1975) 539.

    Google Scholar 

  39. F. A. White, “Mass Spectrometry in Science and Technology” (Wiley, New York, 1968).

    Google Scholar 

  40. J. G. Mavriodes, D. I. Tchernev, J. A. Kafalas and D. F. Kolesar, Mat. Res. Bull. 10 (1976) 1023.

    Google Scholar 

  41. H. H. Kung, H. S. Jarrett, A. W. Sleight and A. Ferretti, J. Appl. Phys. 48 (1977) 2463.

    Google Scholar 

  42. M. A. Butler, D. S. Ginley and M. Eibschutz, ibid 48 (1977) 3070.

    Google Scholar 

  43. M. S. Wrighton, D. L. Morse, A. B. Ellis, D. S. Ginley and H. B. Abrahamson, J. Amer. Chem. Soc. 98 (1976) 44.

    Google Scholar 

  44. M. A. Butler and D. S. Ginley, Nature 273 (1978) 524.

    Google Scholar 

  45. B. Pettinger, R. Schoeppel and H. Gerischer, Ber. Bunsenges Phys. Chem. 78 (1974) 1024.

    Google Scholar 

  46. H. Gerischer and J. Gobrecht, ibid 80 (1976) 327.

    Google Scholar 

  47. S. M. Park and M. E. Barber, J. Electroanal. Chem. 99 (1979) 67.

    Google Scholar 

  48. A. B. Ellis, S. W. Kaiser and M. W. Wrighton, J. Amer. Chem. Soc. 98 (1976) 1635.

    Google Scholar 

  49. K. C. Chang, A. Heller, B. Schwartz, S. Menezes and B. Miller, Science 196 (1977) 1097.

    Google Scholar 

  50. A. B. Ellis, S. W. Kaiser and M. W. Wrighton, J. Amer. Chem. Soc. 99 (1977) 2839.

    Google Scholar 

  51. A. Heller, A. P. Schwartz, R. G. Vadimsky, S. Menezes and B. Miller, J. Electrochem. Soc. 125 (1978) 1156.

    Google Scholar 

  52. H. Gerischer and J. Gobrecht, Ber. Bunsenges Phys. Chem. 82 (1978) 520.

    Google Scholar 

  53. L. A. Harris and R. H. Wilson, J. Electrochem. Soc. 123 (1976) 1010.

    Google Scholar 

  54. R. H. Wilson, Electrochemical Society Meeting, Extended Abstracts Vol. 78-1 (Seattle, WA, 1978) p. 415.

  55. D. S. Ginley and M. L. Knotek, J. Electrochem. Soc. (in press).

  56. H. Gerischer and H. Tributsch, Ber. Bunsenges Phys. Chem. 72 (1968) 437; ibid. 73 (1968) 251.

    Google Scholar 

  57. M. S. Wrighton, J. M. Bolts, A. B. Bocarsly, M. C. Palazzotto and E. G. Walton, J. Vac. Sci. Tech. 15 (1978) 1429.

    Google Scholar 

  58. J. M. Bolts and M. S. Wrighton, J. Amer. Chem. Soc. 100 (1978) 5257.

    Google Scholar 

  59. K. G. McGregor, J. W. Otvos and M. Calvin, 2nd International Conference on Photochemical Conversion and Storage of Solar Energy, Cambridge, England (1978).

  60. S. Wagner and J. Shay, Appl. Phys. Lett. 31 (1977) 446.

    Google Scholar 

  61. A. J. Nozik, 2nd International Conference on Photochemical Conversion and Storage of Solar Energy, 8/10–12/78, Cambridge, England.

  62. L. A. Harris, D. R. Cross and M. E. Gerstner, J. Electrochem. Soc. 124 (1977) 839.

    Google Scholar 

  63. B. Kraeulter and A. J. Bard, J. Amer. Chem. Soc. 100 (1978) 2239, 5985.

    Google Scholar 

  64. R. E. Schwerzel, E. W. Brooman, R. A. Craig, F. R. Moore, L. E. Vaaler and V. E. Wood, Electrochemical Society Meeting Extended Abstracts Vol. 78-1, No. 413, Seattle, Washington May 21 (1978).

  65. H. Tributsch, J. Electrochem. Soc. 125 (1968) 1086.

    Google Scholar 

  66. B. A. Parkinson, A. Heller and B. Miller, Appl. Phys. Letters 33 (1978) 521.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butler, M.A., Ginley, D.S. Principles of photoelectrochemical, solar energy conversion. J Mater Sci 15, 1–19 (1980). https://doi.org/10.1007/BF00552421

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552421

Keywords

Navigation