Skip to main content
Log in

The role of inclusions in the fracture of ceramic materials

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The stress concentrations that occur at inclusions due to thermal expansion and elastic modulus mismatch are discussed and the stress intensity factors at interface cracks that result from these stresses are calculated. It is shown that conservative failure prediction based on an equivalence between inclusion size and crack size is usually acceptable if the shear modulusμ or thermal expansion coefficientα for the inclusion is larger than the matrix values. If, however,μ andα are smaller for the inclusion than the matrix, extensive cracking can develop at the inclusions which may lead to premature failure. For this case the only effective methods for failure prediction are techniques which give directly the maximum stress intensity factor, i.e., proof testing and/or acoustic emission.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Work performed at Westinghouse Laboratories byF. F. Lange andR. Kossowsky, published in ARPA report, “Brittle Materials Design, High Temperature Gas Turbine,” AMMRC CTR73-9 (March 1973).

  2. H. R. Baumgartner andD. W. Richerson, in “Fracture Mechanics of Ceramics” (Plenum Press, New York, 1974) Vol 1, p, 367.

    Google Scholar 

  3. A. G. Evans andS. M. Wiederhorn, NBSIR 73-147 (March 1973);Intl. J. Frac., in press.

  4. C. F. Tiffany andJ. N. Masters,ASTM STP,381 (1964) 249.

    Google Scholar 

  5. D. Weyl,Ber. deut Keram. Ges. 36 (1959) 319.

    Google Scholar 

  6. J. Selsing,J. Amer. Ceram. Soc. 44 (1961) 419.

    Google Scholar 

  7. M. V. Speight andR. C. Lobb,Met. Trans. 3 (1972) 737.

    Google Scholar 

  8. J. N. Goodier,J. Appl. Mech. 1 (1933) 39.

    Google Scholar 

  9. P. C. Paris andG. C. Sih,ASTM, STP 381 (1964) 30.

    Google Scholar 

  10. S. Vaidyanathan andI. Finnie,Trans. ASME, June 1971, p. 242.

  11. E. R. Fuller andA. G. Evans,Met. Trans. to be published.

  12. R. W. Davidge andT. J. Green,J. Mater. Sci. 3 (1968) 629.

    Google Scholar 

  13. A. S. Tetelman andA. G. Evans, in “Fracture Mechanics of Ceramics” (Plenum Press, New York, 1974) Vol. 2, p. 895.

    Google Scholar 

  14. R. J. Lumby andR. F. Coe,Proc. Brit. Ceram. Soc. 15 (1970) 91.

    Google Scholar 

  15. A. G. Evans andJ. V. Sharp,J. Mater. Sci. 6 (1971) 1292.

    Google Scholar 

  16. Materials produced at Norton Company and Westinghouse, and reported in [1].

  17. S. Prochazka andR. J. Charles, in “Fracture Mechanics of Ceramics” (Plenum Press, New York, 1974) Vol. 2, p. 579.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, A.G. The role of inclusions in the fracture of ceramic materials. J Mater Sci 9, 1145–1152 (1974). https://doi.org/10.1007/BF00552831

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00552831

Keywords

Navigation