Skip to main content
Log in

The microscopic failure processes and their relation to the structure of amine-cured bisphenol-A-diglycidyl ether epoxies

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Electron and optical microscopy are used to study the relation between the structure and the microscopic flow and failure processes of diethylene triamine-cured bisphenol-A-diglycidyl ether epoxies. By straining films directly in the electron microscope, these epoxies are found to consist of 6 to 9 nm diameter particles which remain intact when flow occurs. It is suggested that these particles are intramolecularly crosslinked molecular domains which can interconnect to form larger network morphological entities. Epoxy films, either strained directly in the electron microscope or strained on a metal substrate, deform and fail by a crazing process. The flow processes that occur during deformation are dependent on the network morphology in which regions of either high or low crosslink density are the continuous phase. The fracture topographies of the epoxies are interpreted in terms of a crazing process. The coarse fracture topography initiation regions result from void growth and coalescence through the centre of a simultaneously growing poorly developed craze which consists of coarse fibrils. The surrounding smooth slow-crack growth mirror-like region results from crack propagation either through the centre or along the craze—matrix boundary interface of a thick, well developed craze consisting of fine fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. P. Berry,J. Polym. Sci. 50 (1961) 107.

    Google Scholar 

  2. Idem, ibid 50 (1961) 313.

    Google Scholar 

  3. R. F. Boyer,Rubber Chem. Technol. 36 (1963) 1301.

    Google Scholar 

  4. R. P. Kambour,J. Polym. Sci. A3 (1965) 1713.

    Google Scholar 

  5. Idem, Polym. Eng. Sci. 8 (1968) 281.

    Google Scholar 

  6. Idem, Appl. Polymer Symposia. 7 (1968) 215.

    Google Scholar 

  7. J. Heijboer, in “Macromolecular Chemistry”, Prague, 1965, edited by O. Wichterle and B. Sedlacek (Interscience, New York, 1968) p. 3755.

    Google Scholar 

  8. E. H. Andrews, “Fracture in Polymers”, (Elsevier, New York, 1968).

    Google Scholar 

  9. S. M. Aharoni,J. Appl. Polym. Sci. 16 (1972) 3275.

    Google Scholar 

  10. S. Rabinowitz andP. Beardmore, in “Critical Reviews in Macromolecular Science”, Vol. 1, (Chem. Rubber Co., Cleveland, 1972) p. 1.

    Google Scholar 

  11. R. J. Morgan,J. Polym. Sci. A-2 11 (1973) 1271.

    Google Scholar 

  12. J. R. Kastelic andE. Baer,J. Macromol Sci.-Phys.,B7(4) (1973) 679.

    Google Scholar 

  13. R. J. Morgan andL. E. Nielsen,ibid B9(2) (1974) 239.

    Google Scholar 

  14. A. J. Kovacs,Adv. Polym. Sci. 3 (1964) 394.

    Google Scholar 

  15. M. H. Litt andA. V. Tobolsky,J. Macromol. Sci.-Phys. B1(3) (1967) 433.

    Google Scholar 

  16. R. F. Boyer,Polym. Eng. Sci. 8 (1968) 161.

    Google Scholar 

  17. R. J. Morgan andJ. E. O'Neal,Polym. and Plast. Tech and Eng. 5(2) (1975) 173.

    Google Scholar 

  18. S. E. B. Petrie, in “Polymeric Materials: Relationships Between Structure and Mechanical Behaviour”, edited by E. Baer and S. V. Radcliffe, (A.S.M., 1975) p. 55.

  19. R. J. Morgan andJ. E. O'Neal,J. Polym. Sci. A-2 14 (1976) 1053.

    Google Scholar 

  20. A. N. Gent,J. Mater. Sci. 5 (1970) 925.

    Google Scholar 

  21. E. H. Andrews, in “The Physics of Glassy Polymers”, edited by R. N. Haward, (Applied Science Publishers Ltd., Barking 1973) Chapter 7.

    Google Scholar 

  22. D. Katz andA. V. Tobolsky,Polymer 4 (1963) 417.

    Google Scholar 

  23. T. K. Kwei,J. Polym. Sci. A1 (1963) 2977.

    Google Scholar 

  24. A. S. Kenyon andL. E. Nielsen,J. Macromol. Sci.-Chem.,A3(2) (1969) 275.

    Google Scholar 

  25. R. P. Kreahling andD. E. Kline,J. Appl. Polym. Sci. 13 (1969) 2411.

    Google Scholar 

  26. J. P. Bell,J. Polym. Sci A2,8 (1970) 417.

    Google Scholar 

  27. T. Murayama andJ. P. Bell,ibid 8 (1970) 437.

    Google Scholar 

  28. M. A. Acitelli, R. B. Prime andE. Sacher,Polymer 12 (1971) 335.

    Google Scholar 

  29. R. G. C. Arridge andJ. H. Speake,ibid 12 (1972) 443, 450.

    Google Scholar 

  30. P. V. Sidyakin,Vysokomol. soyed. A14 (1972) 979.

    Google Scholar 

  31. T. Hirai andD. E. Kline,J. Appl. Polym. Sci. 16 (1972) 3145.

    Google Scholar 

  32. R. B. Prime andE. Sacher,Polymer 13 (1972) 455.

    Google Scholar 

  33. P. G. Babayevsky andJ. K. Gillham,J. Appl. Polym. Sci. 17 (1973) 2067.

    Google Scholar 

  34. T. Hirai andD. E. Kline,ibid 17 (1973) 31.

    Google Scholar 

  35. E. Sacher,Polymer 14 (1973) 91.

    Google Scholar 

  36. D. A. Whiting andD. E. Kline,J. Appl. Polym. Sci. 18 (1974) 1043.

    Google Scholar 

  37. J. K. Gillham, J. A. Benci andA. Noshay,ibid 18 (1974) 951.

    Google Scholar 

  38. T. S. Carswell, “Phenoplasts”, (Interscience, New York, 1947).

    Google Scholar 

  39. T. G. Rochow andF. G. Rowe,Anal. Chem. 21 (1949) 261.

    Google Scholar 

  40. R. A. Spurr, E. H. Erath, H. Myers andD. C. Pease,Ind. Eng. Chem. 49 (1957) 1839.

    Google Scholar 

  41. E. H. Erath andR. A. Spurr,J. Polym. Sci. 35 (1959) 391.

    Google Scholar 

  42. T. G. Rochow,Anal. Chem. 33 (1961) 1810.

    Google Scholar 

  43. E. H. Erath andM. Robinson,J. Polym. Sci. C 3 (1963) 65.

    Google Scholar 

  44. H. P. Wohnsiedler,J. Polym. Sci. C 3 (1963) 77.

    Google Scholar 

  45. D. H. Solomon, B. C. Loft andJ. D. Swift,J. Appl. Polym. Sci. 11 (1967) 1593.

    Google Scholar 

  46. R. E. Cuthrell ibid 11 (1967) 949.

    Google Scholar 

  47. A. N. Neverov, N. A. Birkina, Yu. V. Zherdev andV. A. Kozlov,Vysokomol. soyed. A10 (1968) 463.

    Google Scholar 

  48. G. Nenkov andM. Mikhailov,Makromol. Chem. 129 (1969) 137.

    Google Scholar 

  49. B. E. Nelson andD. T. Turner,J. Polym. Sci. A-2 10 (1972) 2461.

    Google Scholar 

  50. L. G. Bozveliev andM. G. Mihajlov,J. Appl. Polym. Sci. 17 (1973) 1963, 1973.

    Google Scholar 

  51. R. J. Morgan andJ. E. O'Neal,Polymer Preprints 16,2 (1975) 610.

    Google Scholar 

  52. K. Selby andL. E. Miller,J. Mater. Sci. 10 (1975) 12.

    Google Scholar 

  53. J. L. Racich andJ. A. Koutsky,Bull. Am. Phys. Soc. 20 (1975) 456.

    Google Scholar 

  54. M. I. Karyakina, M. M. Mogilevich, N. V. Maiorova andA. V. Udalova,Vysokomol. soyed. A17 (1975) 466.

    Google Scholar 

  55. M. V. Maiorova, M. M. Mogilevich, M. I. Karyakina andA. V. Udalova,ibid A17 (1975) 471.

    Google Scholar 

  56. V. M. Smartsev, A. Ye. Chalykh, S. A. Nenakhov andA. T. Sanzharovskii,ibid A17 (1975) 836.

    Google Scholar 

  57. L. J. Broutman andF. J. McGarry,J. Appl. Polym. Sci. 9 (1965) 609.

    Google Scholar 

  58. R. Griffiths andD. G. Holloway,J. Mater. Sci. 5 (1970) 302.

    Google Scholar 

  59. R. L. Patrick, W. G. Gehman, L. Dunbar andJ. A. Brown,J. Adhesion 3 (1971) 165.

    Google Scholar 

  60. P. B. Bowden andJ. A. Dukes,J. Mater. Sci. 7 (1972) 52.

    Google Scholar 

  61. R. L. Patrick, in “Treatise on Adhesion and Adhesives”, Vol. 3, edited by R. L. Patrick, (Dekker, New York, 1973) p. 163.

    Google Scholar 

  62. R. J. Young, P. W. R. Beaumont,J. Mater. Sci. 10 (1975) 1343.

    Google Scholar 

  63. R. J. Morgan andJ. E. O'Neal,Amer. Chem. Soc. Div. Org. Coat. Plast. Preprints 36 2 (1976) 689.

    Google Scholar 

  64. A. Christiansen andJ. B. Shortall,J Mater. Sci. 11 (1976) 1113.

    Google Scholar 

  65. R. J. Morgan andJ. E. O'Neal,J. Macromol. Sci.-Phys. (in press).

  66. S. Mostovoy andE. J. Ripling,J. Appl. Polym. Sci. 10 (1966) 1351.

    Google Scholar 

  67. Idem, ibid 15 (1971) 611.

    Google Scholar 

  68. A. T. Dibennedetto andA. D. Wambach,Int. J. Polym. Mater. 1 (1972) 159.

    Google Scholar 

  69. A. D. S. Diggwa,Polymer 15 (1974) 101.

    Google Scholar 

  70. W. D. Bascom, R. L. Cottington, R. L. Jones andP. Peyser,J. Appl. Polym. Sci. 19 (1975) 2545.

    Google Scholar 

  71. P. G. Babayevskii andYe. B. Trostyanskaya,Vysokomol. soyed. A17 (1975) 906.

    Google Scholar 

  72. R. A. Gledhill andA. J. Kinloch,J. Mater. Sci. 10 (1975) 1263.

    Google Scholar 

  73. H. Lee andK. Neville, “Handbook of Epoxy Resins”, (McGraw-Hill, New York, 1967) Chapter 5.

    Google Scholar 

  74. B. Wunderlich andA. Mehta,J. Polym. Sci. A-2 12 (1974) 255.

    Google Scholar 

  75. S. M. Aharoni,J. Appl. Polym. Sci. 19 (1975) 1103.

    Google Scholar 

  76. K. Neki andP. H. Geil,J. Macromol. Sci.-Phys.,B8(1–2) (1973) 295.

    Google Scholar 

  77. P. J. Flory, “Principles of Polymer Chemistry”, (Cornell University Press, Ithaca, 1953) Chapter 9.

    Google Scholar 

  78. E. G. K. Pritchett,Chem. and Ind. (1949) 295.

  79. N. J. L. Megson, “Phenolic Resin Chemistry”, (Academic Press, New York, 1958).

    Google Scholar 

  80. D. H. Solomon,J. Macromol. Sci. C1 (1967) 179.

    Google Scholar 

  81. R. J. Morgan andJ. E. O'Neal,J. Mater. Sci. 12 (1977) 1338.

    Google Scholar 

  82. A. J. Chompff,Amer. Chem. Soc. Div. Org. Coat. Plast. Preprints, 36 2 (1976) 529.

    Google Scholar 

  83. J. Murray andD. Hull,Polymer 10 (1969) 451.

    Google Scholar 

  84. S. Rabinowitz, A. R. Krause andP. Beadmore,J. Mater. Sci. 8 (1973) 11.

    Google Scholar 

  85. P. L. Cornes andR. N. Haward' Polymer 15 (1974) 149

    Google Scholar 

  86. J. Murray andD. Hull,J. Polym. Sci. A-2 8 (1970) 1521.

    Google Scholar 

  87. P. Beahan, M. Bevis andD. Hull,J Mater. Sci 8 (1972) 162.

    Google Scholar 

  88. M. J. Doyle,J. Polym. Sci. A-2 13 (1975) 127.

    Google Scholar 

  89. Idem, J. Mater. Sci. 10 (1975) 300.

    Google Scholar 

  90. J. Hoare andD. Hull,ibid 10 (1975) 1861.

    Google Scholar 

  91. M. D. Skibo, R. W. Hertzberg andJ. A. Manson,ibid 11 (1976) 479.

    Google Scholar 

  92. J. E. O'Neal, unpublished work on titanium alloys (1975).

  93. G. Pezzin, G. Ajroldi, T. Casiraghi, C. Garbuglio andG. Vittadini,J. Appl. Polym. Sci. 16 (1972) 1839.

    Google Scholar 

  94. R. G. Faulkner,J. Macromol. Sci.-Phys. B11(2) (1975) 251.

    Google Scholar 

  95. R. P. Chartoff,Polymer 16 (1975) 470.

    Google Scholar 

  96. F. Zandeman, Publs. Scient. Tech. Minist. Air, Paris No. 291 (1954) Ch. IV.

  97. S. B. Newman andI. Wolock,J. Appl. Phys. 29 (1958) 49.

    Google Scholar 

  98. I. Wolock andS. B. Newman in “Fracture Processes in Polymeric Solids”, edited by B. Rosen (Interscience, 1964) Ch. II c.

  99. R. J. Bird, J. Mann, G. Pogany andG. Rooney,Polymer 7 (1966) 307.

    Google Scholar 

  100. M. J. Owen andR. G. Rose,J. Mater. Sci. 10 (1975) 1711.

    Google Scholar 

  101. M. J. Doyle,ibid 10 (1975) 159.

    Google Scholar 

  102. H. El-Hakeem, G. P. Marshall, E. I. Zichy andL. E. Culver,J. Appl. Polym. Sci. 19 (1975) 3093.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Morgan, R.J., O'Neal, J.E. The microscopic failure processes and their relation to the structure of amine-cured bisphenol-A-diglycidyl ether epoxies. J Mater Sci 12, 1966–1980 (1977). https://doi.org/10.1007/BF00561968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00561968

Keywords

Navigation