Skip to main content
Log in

Ultrasonic velocity and attenuation determination by laser-ultrasonics

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Materials are often characterized by measuring the velocity and attenuation of ultrasonic waves. Laser-ultrasonics, which uses lasers for generation and detection of ultrasound, has several advantages compared to the classical piezoelectric techniques, but the use of lasers is often associated with ill-defined source and receiver characteristics making diffraction effects hard to evaluate. We have identified two regimes which, in practice, allow the measurement of velocity and attenuation: the point source/point receiver and the large uniform source/large uniform receiver regimes. These approaches are discussed and illustrated with several examples of application. Limitations caused by misalignment between the generating and detecting laser spots are also analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Schreiber, O. Anderson, and N. Soga,Elastic Constants and Their Measurements, (McGraw Hill, New York, 1973).

    Google Scholar 

  2. E. P. Papadakis, Absolute measurements of ultrasonic attenuation using damped nondestructive testing transducers,J. Testing Eval. 12 273–279 (1984).

    Google Scholar 

  3. D. Daniel, K. Sakata, J. J. Jonas, I. Makarow, and J. F. Bussière, Acoustoelastic Determination of the Fourth Order ODF Coefficients and Application to R-Value Prediction, Material Res. Soc., Symposium Proc., Vol. 142, 1989, pp. 77–82; Y. Li and R. B. Thompson, Ultrasonic Characterization of Texture, Material Res. Soc., Symposium Proc., Vol. 142, 1989, pp. 83–88.

    Google Scholar 

  4. D. R. Allen, W. H. B. Cooper, C. M. Sayers, and M. G. Silk, The use of ultrasonics to measure residual stresses, inResearch Techniques in Nondestructive Testing, R. S. Sharpe, ed. (Academic Press, 1982), Vol. VI, pp. 151–209.

  5. A. Vary, Ultrasonic measurement of material properties, inResearch Techniques in Nondestructive Testing, R. S. Sharpe, ed. (Academic Press, 1980), Vol. IV, pp. 159–204.

  6. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, and S. B. Palmer, Laser generation of ultrasound in metals, inResearch Techniques in Nondestructive Testing, R. S. Sharpe, ed. (Academic Press, 1982), Vol. V, pp. 281–327.

  7. D. A. Hutchins, Mechanisms of pulsed photoacoustic generation,Can. J. Phys. 641247–1264, 1986.

    Google Scholar 

  8. J. -P. Monchalin, Optical detection of ultrasound,IEEE Trans. Ultrasonics, Ferr. Frequency Control UFFC-33485–499, 1986.

    Google Scholar 

  9. U. Schleichert, K. J. Langenberg, W. Arnold, and S. Fassbender, A quantitative theory of laser-generated ultrasound, inReview of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds., (Plenum Press, New York, 1989), Vol. 8A, pp. 489–496.

    Google Scholar 

  10. R. J. von Gutfeld, 20 MHz acoustic waves from pulse thermoelastic expansions of constrained surfaces,Appl. Phys. Lett. 30257–259 (1977).

    Google Scholar 

  11. R. J. Conant and K. L. Telschow, Longitudinal wave precursor signal from an optically penetrating thermoelastic laser source, inReview of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, New York, 1989), Vol. 8A, pp. 497–504.

    Google Scholar 

  12. J.- P. Monchalin, R. Héon, P. Bouchard, and C. Padioleau, Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry-Pérot,Appl. Phys. Lett. 551612–1614 (1989).

    Google Scholar 

  13. M. Paul, B. Betz, and W. Arnold, Interferometric detection of ultrasound at rough surfaces using optical phase conjugation,Appl. Phys. Lett. 501569–1571 (1987).

    Google Scholar 

  14. K. Yamada and Y. Fujii, Acoustic response of a circular receiver to a circular source of different radius,J. Acoust. Soc. Am.,401193–1194 (1966).

    Google Scholar 

  15. J.- D. Aussel and J.- P. Monchalin, Precision laser-ultrasonic velocity measurement and elastic constant determination,Ultrasonics 27165–177 (1989).

    Google Scholar 

  16. J.- D. Aussel and J.- P. Monchalin, Measurement of ultrasound attenuation by laser ultrasonics,J. Appl. Phys. 652918–2922 (1989).

    Google Scholar 

  17. F. J. Harris, On the use of windows for harmonic analysis with the discrete Fourier transform,Proc. IEEE 6651–83 (1978).

    Google Scholar 

  18. J.- P. Monchalin, R. Héon, J. F. Bussière, and B. Farahbakhsh, Laser-ultrasonic determination of elastic constants at ambient and elevated temperatures, inNondestructive Characterization of Materials II, J. F. Bussière, J.- P. Monchalin, C. O. Ruud, and R. E. Green, Jr. eds. (Plenum Publishing, 1987), pp. 717–723.

  19. R. J. Dewhurst, C. Edwards, A. D. W. Mckie, and S. B. Palmer, A remote laser system for ultrasonic velocity measurement at high temperatures,J. Appl. Phys. 631225–1227 (1988).

    Google Scholar 

  20. L. F. Bresse, D. A. Hutchins, and K. Lundgren, Elastic constants determination using ultrasonic generation by pulsed lasers,Review of Progress in Quantitative Nondestructive Evaluation, in D. O. Thompson and D. E. Chimenti, eds. (Plenum Press, N.Y., 1988), Vol. 7B, pp. 1219–1226.

    Google Scholar 

  21. B. Pouet and N. J. P. Rasolofosaon, Ultrasonic intrinsic attenuation measurement using laser techniques, IEEE Ultrasonic Symposium Proceedings, 1989, pp. 545–549.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monchalin, J.P., Aussel, J.D. Ultrasonic velocity and attenuation determination by laser-ultrasonics. J Nondestruct Eval 9, 211–221 (1990). https://doi.org/10.1007/BF00565639

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00565639

Key words

Navigation