Skip to main content
Log in

Ultrasonic classification of imperfect interfaces

  • Published:
Journal of Nondestructive Evaluation Aims and scope Submit manuscript

Abstract

Ultrasonic reflection measurements from material interfaces are commonly used to detect and quantitatively characterize boundary imperfections of different kinds. Either shear or longitudinal waves can be used to assess the degree of the interface imperfection in acoustical terms. On the other hand, the evaluation of this data in terms of strength-related mechanical properties requiresa priori knowledge of the physical nature of the imperfection. It is shown in this paper that the ratio between the normal and transverse interfacial stiffnesses can be used to classify the interface imperfection. This ratio is readily measured, e.g., by comparing the longitudinal and shear reflection coefficients at normal incidence. Both theoretical and experimental results indicate that different types of imperfections, such as kissing, partial, and slip bonds, can be distinguished by this simple technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. P. Jones and J. S. Whittier,J. Appl. Mech 34905 (1967).

    Google Scholar 

  2. H. G. Tattersall,J. Phys. 6819 (1973).

    Google Scholar 

  3. M. Schoenberg,J. Acoust. Soc. Am. 681516 (1980).

    Google Scholar 

  4. J. M. Baik and R. B. Thompson,J. Nondestr. Eval. 4177 (1984).

    Google Scholar 

  5. R. B. Thompson and C. J. Fiedler, inReview of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1984), Vol. 3A, pp. 207–215.

    Google Scholar 

  6. Y. C. Angel and J. D. Achenbach,J. Appl. Mech. 5233 (1985).

    Google Scholar 

  7. Y. C. Angel and J. D. Achenbach, inReview of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1985), Vol. 4A, pp. 83–89.

    Google Scholar 

  8. A. Pilarski and J. L. Rose,J. Appl. Phys. 63300 (1988).

    Google Scholar 

  9. F. J. Margetan, R. B. Thompson, and T. A. Gray,J. Nondestr. Eval. 7131 (1988).

    Google Scholar 

  10. L. J. Pyrak-Nolte, L. R. Myer, and N. G. W. Look,J. Geophys. Res. 958617 (1990).

    Google Scholar 

  11. D. A. Sotiropoulos and J. D. Achenbach,J. Nondestr. Eval. 7123 (1988).

    Google Scholar 

  12. P. B. Nagy and L. Adler, inElastic Waves and Ultrasonic Nondestructive Evaluation (North Holland, Amsterdam, 1990), pp. 229–239.

    Google Scholar 

  13. P. B. Nagy and L. Adler, inReview of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1991), Vol. 10A, pp. 177–184.

    Google Scholar 

  14. S. I. Rokhlin, M. Hefets, and M. J. Rosen,J. Appl. Phys. 522847 (1981).

    Google Scholar 

  15. P. B. Nagy and L. Adler,J. Nondestr. Eval. 7199 (1988).

    Google Scholar 

  16. P. B. Nagy,J. Adhesion Sci. Technol. 5619 (1991).

    Google Scholar 

  17. N. F. Haines, The Theory of Sound Transmission and Reflection at Contacting Surfaces, CEGB Report RD-B-N4744, Berkeley Nuclear Laboratories, 1980.

  18. A. B. Wooldridge, The Effects of Compressive Stress on the Ultrasonic Response of Steel-Steel Interfaces and of Fatigue Cracks, CEGB Report NW-SSD-RR-42-79, Berkeley Nuclear Laboratories, 1979.

  19. N. Yoshioka and C. H. Scholz,J. Geophys. Res. 9417681 (1989).

    Google Scholar 

  20. N. Yoshioka and C. H. Scholz,J. Geophys. Res. 9417691 (1989).

    Google Scholar 

  21. Y. C. Angel and J. D. Achenbach,Wave Motion 7375 (1985).

    Google Scholar 

  22. D. A. Sotiropoulos and J. D. Achenbach,J. Acoust. Soc. Am. 84752 (1988).

    Google Scholar 

  23. H. Tada, P. Paris, and G. Irwin,The Stress Analysis of Cracks Handbook (Del Research, St. Louis, 1973).

    Google Scholar 

  24. J. H. Rose, inReview of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1989), Vol. 8B, pp. 1925–1931.

    Google Scholar 

  25. J. E. Gubernatis, E. Domany, and J. A. Krumhansl,J. Appl. Phys. 482804 (1977).

    Google Scholar 

  26. J. E. Eshelby,Proc. Roy. Soc. London 241A376 (1957).

    Google Scholar 

  27. J. E. Gubernatis and E. J. Domany,J. Appl. Phys. 50818 (1979).

    Google Scholar 

  28. M. Oshumi, S. Kinyuotou, and M. Sakamato,Trans. Iron Steel Inst. Japan 25513 (1985).

    Google Scholar 

  29. S. I. Rokhlin and Y. J. Wang, inReview of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1991), Vol. 10A, pp. 185–192.

    Google Scholar 

  30. S. I. Rokhlin and Y. J. Wang,J. Acoust. Soc. Am. 89503 (1991).

    Google Scholar 

  31. J. D. Eshelby, inProgress in Solid Mechanics (North-Holland, Amsterdam, 1961), Vol. 2, pp. 87–140.

    Google Scholar 

  32. I. Yalda-Mooshabas, F. J. Margetan, T. A. Gray, and R. B. Thompson, inReview of Progress in Quantitative Nondestructive Evaluation (Plenum, New York, 1992), Vol. 11B, pp. 1363–1369.

    Google Scholar 

  33. J. E. Gubernatis, E. Domany, and J. A. Krumhansl,J. Appl. Phys. 482812 (1972).

    Google Scholar 

  34. L. J. Pyrak-Nolte, L. R. Myer, and N. G. W. Cook,J. Geophys. Res. 95 11345 (1990).

    Google Scholar 

  35. C. J. Hsu and M. Schoenberg,J. Acoust. Soc. Am. 88:S46 (1990).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagy, P.B. Ultrasonic classification of imperfect interfaces. J Nondestruct Eval 11, 127–139 (1992). https://doi.org/10.1007/BF00566404

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00566404

Key words

Navigation