Skip to main content
Log in

Microstructural characterization of “REFEL” (reaction-bonded) silicon carbides

  • Papers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Quantitative characterization of the microstructure of a number of samples of reactionbonded (REFEL) silicon carbide has been undertaken employing transmission and scanning electron microscopy, optical microscopy, and electron and X-ray diffraction techniques. Impurity-controlled secondary electron SEM image contrast has proved particularly useful in differentiating between the SiC present in the initial compact and that formed during the reaction-bonding process, and, in contrast to previous descriptions of the microstructure, it has been found that the newly-formed SiC is deposited from the supersaturated solution of carbon in molten silicon both epitaxially on the original SiC grains, maintaining the sameα-polytypic stacking sequences, and by nucleation of fine cubicβ-SiC elsewhere. The relative quantities of material occurring by these two mechanisms have been found to vary from sample to sample, although the epitaxial growth on the original grains always occurs to some extent and is responsible for the bulk cohesion of the material. Some conclusions have been drawn concerning the reaction model and the process parameters controlling the microstructure of this type of material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Popper, “Special Ceramics” (Heywood, London, 1960) p. 209.

    Google Scholar 

  2. C. W. Forrest, P. Kennedy andJ. V. Shennan, “special Ceramics 5” (British Ceramic Research Association, Stoke-on-Trent, 1972, p. 99.

    Google Scholar 

  3. C. W. Forrest andP. Kennedy, “Special Ceramics 6” (B. Ceram. R. A., 1975) p. 183.

  4. P. Kennedy andJ. V. Shennan, Atom. No. 206 (1973); also reprinted in “Silicon Carbide 1973” (see reference 24) p. 359.

  5. C. A. Brookes andM. Imai, “Special Ceramics 1964” (Academic Press, London, 1965) p. 251.

    Google Scholar 

  6. C. R. Gostelow andJ. E. Restall,Proc. Brit. Ceram. Soc. 22 (1973) 117.

    Google Scholar 

  7. J. J. Burke, A. E. Gorum andR. N. Katz (Editors), “Ceramics for high performance applications”, (Brook Hill, Chestnut Hill, Mass. USA 1974).

    Google Scholar 

  8. G. E. J. Beckmann,J. Electrochem. Soc. 110 (1963) 84.

    Google Scholar 

  9. L. S. Ramsdell,Amer. Min. 32 (1947) 64.

    Google Scholar 

  10. O. O. Adewoye, G. R. Sawyer, J.W. Edington andT. F. Page, U.S. Army Tech. Report DAJA-37-74-C-1310 (1974).

  11. O. O. Adewoye, PhD Thesis, University of Cambridge (1976).

  12. O. O. Adewoye andT. F. Page, in preparation (1978).

  13. G. R. Sawyer, T. F. Page andR. J. Pargeter in preparation (1978).

  14. J. Ware (UKAEA, Springfields) private communication.

  15. P. T. B. Shaffer,Acta Cryst. B25 (1969) 477.

    Google Scholar 

  16. A. H. Gomes de Mesquita,ibid,23 (1967) 610.

    Google Scholar 

  17. A. van der Ziel, “Solid State Physical Electronics”, (Prentice-Hall Inc., New Jersey, USA, 1968) p. 84.

    Google Scholar 

  18. N. W. Jepps, private communication.

  19. H. N. Baumann,J. Electrochem. Soc. 99 (1952) 109.

    Google Scholar 

  20. R. W. Bartlett, W. E. Nelson andF. A. Halden,ibid 114 (1967) 1149.

    Google Scholar 

  21. R. C. Ellis, “Silicon Carbide”, Proceedings of the Conference in Boston, 1959 (Pergamon Press, London, 1960) p. 124.

    Google Scholar 

  22. F. A. Halden,ibid“, p. 115.

    Google Scholar 

  23. R. W. Brander andR. P. Sutton,J. Phys. D. 2 (1969) 309.

    Google Scholar 

  24. W. von Muench andK. Gillessen, “Silicon Carbide—1973”, Proceedings of the Conference in Miami Beach (University of South Carolina Press, Columbia, South Carolina USA, 1974) P. 51.

    Google Scholar 

  25. K. Gillessen andW. von Muench,J. Cryst. Growth 19 (1973) 263.

    Google Scholar 

  26. J. A. Powell andH. A. Will,J. Appl. Phys. 44 (1973) 5177.

    Google Scholar 

  27. H. Sato, S. Shinozaki, M. Yessik andJ. E. Noakes, “Silicon Carbide—1973”, Proceedings of the Conference in Miami Beach (University of South Carolina Press, Columbia, South Carolina USA, 1974) p. 222.

    Google Scholar 

  28. Y. A. Vodakov andE. N. Mokhov,ibid“, p. 508.

    Google Scholar 

  29. A. R. Verma andP. Krishma, “Polymorphism and polytypism in crystals” (J. Wiley Inc., London and New York 1966) p. 93.

    Google Scholar 

  30. J. P. Ashford, “Special Ceramics 4” (British Ceramic Research Association, Stoke-on-Trent 1968) p. 173.

    Google Scholar 

  31. P. Marshall,ibid“ p. 191.

    Google Scholar 

  32. A. F. McLean, R. R. Baker, R. J. Bratton andD. G. Miller, U.S. Army Tech. Report AMMRC CTR 76-12 (ARPA) (Watertown, Mass. 1976).

  33. P. Kennedy (UKAEA, Springfields), private communication.

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sawyer, G.R., Page, T.F. Microstructural characterization of “REFEL” (reaction-bonded) silicon carbides. J Mater Sci 13, 885–904 (1978). https://doi.org/10.1007/BF00570528

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00570528

Keywords

Navigation