Skip to main content
Log in

Segmental heterogeneity of epithelial transport in rat large intestine

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Functionally isolated segments of rat colon and rectum were perfused in situ in a closed loop system. Rectum was defined as the lower 25–35% of the length of large intestine (cecum excluded). Perfusion conditions were optimized at 0.5 ml·min−1 and 3 cm H2O luminal pressure.

Variation of perfusion rate between 0.2 and 2 ml·min−1 did not influence net volume transport (J nv ). Luminal distension following elevation of hydrostatic pressure to 18 cm H2O reversibly increasedJ nv . Under control conditionsJ nv and Na+-transport rates (J nNa ) of colon were 2–3 times higher than those of rectum. In colon transepithelial electrical potential difference ψms was time independent −12 mV (lumen negative) whereas rectal ψms increased with time from −6 mV, reaching a plateau of −67 mV within 6h. Amiloride 10−4 mol·l−1 had no effect on ψms,J nv , andJ nNa in colon but did slightly depress K+-secretion in colon descendens. In contrast, ψms in rectum was dosedependently depressed, being reversed to +7 mV at 10−4 mol·l−1.J nv andJ nNa were decreased by half. Acetazolamide in addition to amiloride lowered the positive post-amiloride rectal ψms by half. Adrenalectomy had no effect on colonic ψms, but abolished ψms of the rectum. A single dose of 40 μg·kg−1 b.w. aldosterone during the experiment restored the typical time course of rectal ψms, but did not affect ψms in colon. It is concluded that aldosterone induces an amiloride-sensitive Na+-pathway only in rectum, but not in colon, and that colon and rectum differ basically in their transport properties, quantitatively as well as qualitatively, as do the kidney distal convoluted tubule and the cortical collecting duct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Archampong, E. Q., Harris, J., Clark, C. G.: The absorption and secretion of water and electrolytes across the healthy and the diseased human colonic mucosa measured in vitro. Gut13, 880–886 (1972)

    Google Scholar 

  2. Barratt, L. J.: The effect of amiloride on the transepithelial potential difference of the distal tubule of the rat kidney. Pflügers Arch.361, 251–254 (1976)

    Google Scholar 

  3. Barry, R. J. C., Eggenton, J.: Electrical activity of the intestine. Biomembranes, 4B, intestinal absorption (D. H. Smyth, ed.), pp. 917–960. London-New York: Plenum Press 1974

    Google Scholar 

  4. Bastl, Ch., Binder, H. J., Hayslett, J. P.: The mammalian colon — a model of distal tubule function. Fed. Proc.35, 464 (1976)

    Google Scholar 

  5. Behar, J.: Magnesium absorption by the rat ileum and colon. Am. J. Physiol.327, 334–340 (1974)

    Google Scholar 

  6. Bright-Asare, P., Binder, H. J.: Stimulation of colonic secretion of water and electrolytes by hydroxy fatty acids. Gastroenterology64, 81–88 (1973)

    Google Scholar 

  7. Chosniak, I., Munck, B. G., Skadhauge, E.: Sodium chloride transport across the chicken coprodeum. Basic characteristics and dependence on sodium chloride intake. J. Physiol. (Lond.)271, 489–504 (1977)

    Google Scholar 

  8. Cortney, M. A.: Renal tubular transfer of water and electrolytes in adrenalectomized rats. Am. J. Physiol.216, 589–598 (1969)

    Google Scholar 

  9. Cummings, J. H.: The colon: Absorptive, secretory and metabolic functions. Digestion13, 232–240 (1975)

    Google Scholar 

  10. Curran, P. F., Schwartz, G. F.: Na, Cl and H2O transport by rat colon. J. Gen. Physiol.43, 555–571 (1960)

    Google Scholar 

  11. David, H. A., Hartley, H. O., Pearson, E. S.: The distribution of the ratio, in a single normal sample, of range to standard deviation. Biometrika41, 482–493 (1954)

    Google Scholar 

  12. Dolman, D., Edmonds, C. J.: The effect of aldosterone and the renin-angiotensin system on sodium, potassium and chloride transport by proximal and distal rat colon in vivo. J. Physiol. (Lond.)250, 597–611 (1975)

    Google Scholar 

  13. Duarte, C. G., Chomety, F., Giebisch, G.: Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am. J. Physiol.221, 632–639 (1971)

    Google Scholar 

  14. Edmonds, C. J.: The gradient of electrical potential difference and of sodium and potassium of the gut contents along the caecum and colon of normal and sodium-depleted rats. J. Physiol. (Lond.)193, 571–588 (1967)

    Google Scholar 

  15. Edmonds, C. J.: Transport of sodium and secretion of potassium and bicarbonate by the colon of normal and sodium-depleted rats. J. Physiol. (Lond.)193, 589–602 (1967)

    Google Scholar 

  16. Edmonds, C. J.: Salts and water. Biomembranes, 4B, intestinal absorption (D. H. Smyth, ed.), pp. 711–759. London-New York: Plenum Press 1974

    Google Scholar 

  17. Edmonds, C. J., Marriott, J.: The effect of aldosterone and adrenalectomy on the electrical potential difference of rat colon and on the transport of sodium, potassium, chloride, and bicarbonate. J. Endocrinol.39, 517–531 (1967)

    Google Scholar 

  18. Edmonds, C. J., Marriott, J.: Factors influencing the electrical potential across the mucosa of rat colon. J. Physiol. (Lond.)194, 457–478 (1968)

    Google Scholar 

  19. Edmonds, C. J., Marriott, J.: The effect of aldosterone on the electrical activity of rat colon. J. Endocrinol.44, 363–377 (1969)

    Google Scholar 

  20. Edmonds, C. J., Marriott, J.: Na transport and short-circuit current in rat colon in vivo and the effect of aldosterone. J. Physiol. (Lond.)210, 1021–1039 (1970)

    Google Scholar 

  21. Field, M., McColl, I.: Ion transport in rabbit ileal mucosa. III. Effects of catecholamines. Am. J. Physiol.225, 852–856 (1973)

    Google Scholar 

  22. Fisher, K. A., Binder, H. J., Hayslett, J. P.: Potassium secretion by colonic mucosal cells after potassium adaptation. Am. J. Physiol.231, 987–994 (1976)

    Google Scholar 

  23. Frizzell, R. A., Koch, M. J., Schultz, S. G.: Ion transport by rabbit colon. I. Active and passive components. J. Membr. Biol.27, 297–316 (1976)

    Google Scholar 

  24. Fromm, M., Hegel, U., techn. assistance Lüderitz, S.: Transport in large intestine of rat in vivo: Influence of perfusion rate and pressure, of amiloride and acetazolamide. Pflügers Arch.335, R 75 (1975)

    Google Scholar 

  25. Gfeller, E., Walser, M.: Stretch-induced changes in geometry and ultrastructure of transporting surfaces of toad bladder. J. Membr. Biol.4, 16–28 (1971)

    Google Scholar 

  26. Gross, J. B., Imai, M., Kokko, J. P.: A functional comparison of the cortical collecting tubule and the distal tubule. J. Clin. Invest.55, 1284–1294 (1975)

    Google Scholar 

  27. Haberich, F. J., Herzer, R., Aziz, O., Dennhardt, R.: Resorptions-und Sekretionsstudien am Darm. I. Mitteilung. Technik der extrakorporalen Perfusion beliebiger, vorübergehend funktionell isolierter Darmabschnitte an der wachen Ratte. Z. Ges. Exp. Med.148, 223–237 (1968)

    Google Scholar 

  28. Hierholzer, K., Wiederholt, M., Holzgreve, H., Giebisch, G., Klose, R. M., Windhager, E. E.: Micropuncture study of renal transtubular concentration gradients of sodium and potassium in adrenalectomized rats. Pflügers Arch.285, 193–210 (1965)

    Google Scholar 

  29. Lange, S., Veit, K., Hegel, U., Gutsche, H. U.: Die Wirkung von Amilorid auf den Elektrolyttransport des Rattencolons und ihre Abhängigkeit von Mineralocorticoiden. Endokrinologie63, 271–278 (1974)

    Google Scholar 

  30. Lennane, R. J., Peart, W. S., Shaw, J.: Adrenergic influences on the electrical potential across the colonic mucosa of the rabbit. J. Physiol. (Lond.)250, 367–372 (1975)

    Google Scholar 

  31. Leslie, B. R., Schwartz, J. H., Steinmetz, P. R.: Coupling between Cl absorption and HCO 3 secretion in turtle urinary bladder. Am. J. Physiol.225, 610–616 (1973)

    Google Scholar 

  32. Levens, N. R., Munday, K. A., York, B.: Effect of angiotensin II on fluid transport, transmural potential difference and resistance in the rat distal colon in vivo. J. Endocrinol.67, 64–65 (1975)

    Google Scholar 

  33. Lewis, L. D., Fordtran, J. S.: Effect of perfusion rate on absorption, surface area, unstirred water layer thickness, permeability, and intraluminal pressure in the rat ileum in vivo. Gastroenterology68, 1509–1516 (1975)

    Google Scholar 

  34. Lief, P. D., Mutz, B. F., Bank, N.: Effect of stretch on passive transport in toad urinary bladder. Am. J. Physiol.230, 1722–1729 (1976)

    Google Scholar 

  35. Lutz, J.: Hämodynamische Eigenschaften und Gefäßreaktionen der intestinalen Strombahn. Arch. Kreislaufforsch.59, 99–152 (1968)

    Google Scholar 

  36. Lutz, J.: Druckkonstante Perfusion von Teilkreisläufen mittels einer druckgesteuerten Rollenpumpe mit analoger Durchströmungsregistrierung. Pflügers Arch.335, R89 (1972)

    Google Scholar 

  37. McKinney, T. D., Burg, M. B.: Bicarbonate secretion by rabbit cortical collecting tubules in vitro. J. Clin. Invest.61, 1421–1427 (1978)

    Google Scholar 

  38. Mirkovitch, V., Menge, H., Robinson, J. W. L.: The effect of intraluminal hydrostatic pressure on intestinal absorption in vivo. Experientia30, 912–913 (1974)

    Google Scholar 

  39. Nellans, H. N., Frizell, R., Schultz, S. G.: Coupled sodiumchloride influx across the brush border of rabbit ileum. Am. J. Physiol.225, 467–475 (1973)

    Google Scholar 

  40. Pettinger, W. A., Tanaka, K., Keeton, K., Campbell, W. B., Brooks, S. N.: Renin release, an artifact of anesthesia and its implications in rats. Proc. Soc. Exp. Biol. Med.148, 625–630 (1975)

    Google Scholar 

  41. Phillips, S. F., Schmalz, P. F.: HCO3 secretion by the rat colon: Effect of intraluminal Cl and acetazolamide. Proc. Soc. Exp. Biol. Med.135, 116–122 (1970)

    Google Scholar 

  42. Powell, D. J., Malawer, S. J.: Relationship between water and solute transport from isoosmotic solutions by rat intestine in vivo. Am. J. Physiol.215, 49–55 (1968)

    Google Scholar 

  43. Rask-Madsen, J.: Simultaneous measurement of electrical polarization and electrolyte transport by the entire normal and inflamed human colon during in vivo perfusion. Scand. J. Gastroent.8, 327–336 (1973)

    Google Scholar 

  44. Rask-Madsen, J., Hjelt, K.: Effect of amiloride on electrical activity and electrolyte transport in human colon. Scand. J. Gastroent.12, 1–6 (1977)

    Google Scholar 

  45. Schultz, S. G., Frizzell, R. A., Nellans, H. N.: Active sodium transport and the electrophysiology of rabbit colon. J. Membr. Biol.33, 351–384 (1977)

    Google Scholar 

  46. Bindslev, N., Skadhauge, E.: Sodium chloride absorption and solute-linked water flow across the epithelium of the coprodeum and large intestine in the normal and dehydrated fowl (Gallus domesticus). In vivo perfusion studies. J. Physiol. (Lond.)216, 753–768 (1971)

    Google Scholar 

  47. Stoner, L. C., Burg, M. B., Orloff, J.: Ion transport in cortical collecting tubule; effect of amiloride. Am. J. Physiol.227, 453–459 (1974)

    Google Scholar 

  48. Thomas, D. H., Skadhauge, E., Read, M. W.: Steroid effects on gut functions in birds. Biochem. Soc. Trans.3, 1164–1168 (1975)

    Google Scholar 

  49. Veit, K.: Der Einfluß von Amilorid und Mineralocorticoiden auf den Elektrolyttransport am Enddarm der Ratte. Med. Diss., Berlin 1975

  50. Vogel, G., Meyering, E., Stoeckert, I.: Gleichgewichtskonzentrationen einiger Plasma-Solute und Na-Absorption bei Erhöhung des Na-Angebotes durch Steigerung der Na-Angebotskonzentration oder des Perfusionsvolumens/Zeit im Jejunum und Colon von Ratten. Pflügers Arch.310, 150–166 (1969)

    Google Scholar 

  51. Walser, M.: Reversible stimulation of sodium transport. J. Clin. Invest.48, 1714–1723 (1969)

    Google Scholar 

  52. Wells, H. S.: The passage of materials through the intestinal wall. I. The relation between intra-intestinal pressure and the absorption of water. Am. J. Physiol.99, 209–220 (1931)

    Google Scholar 

  53. Wright, F. S.: Increasing magnitude of electrical potential along the renal distal tubule. Am. J. Physiol.220, 624–638 (1971)

    Google Scholar 

  54. Yau, W. M., Makhlouf, G. M.: Comparison of transport mechanisms in isolated ascending and descending rat colon. Am. J. Physiol.228, 191–195 (1975)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft (Wi 328).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fromm, M., Hegel, U. & Lüderitz, S. Segmental heterogeneity of epithelial transport in rat large intestine. Pflugers Arch. 378, 71–83 (1978). https://doi.org/10.1007/BF00581960

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00581960

Key words

Navigation