Skip to main content
Log in

Kinetics of Na inactivation in frog atria

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    In frog atria, time and voltage dependence of inactivation and reactivation of fast transient Na current were studied using the sucrose-gap voltage clamp technique. Experiments were done at 4–7° C.

  2. 2.

    Fast inward current inactivated by conditioning depolarizing clamps. The relation between steady-state inactivation and membrane potential is represented by an S-shaped curve similar to that observed in squid axon. At the resting level the availability of the Na-carrying system is about 60–70%.

  3. 3.

    During depolarizing clamps inactivation of Na current follows an approximately exponential time course with time constants between 1.5 and 8 msec.

  4. 4.

    Recovery from inactivation (reactivation) is much slower than development of inactivation. Time constants between 100 and 600 msec were observed during the recovery process following a repolarization or a hyperpolarization.

  5. 5.

    A ratio between the time constants of inactivation and reactivation in the order of 1∶50 was found when the two processes were studied at the same potential level.

  6. 6.

    In the frog atrial action potential the slow reactivation of the Na system is reflected by a relative refractory period reaching far beyond full repolarization.

  7. 7.

    Assuming that the slow course of Na reactivation is an inherent feature of Na kinetics, the inactivation variable (h) of the Hodgkin-Huxley theory (1952d) seems inadequate to describe the inactivation-reactivation process in frog atria. Formally fast inactivation and slow reactivation could be accounted for by replacing the variableh with two variables which both decrease on depolarization but largely differ in the rate constants.

Zusammenfassung

  1. 1.

    In “voltage-clamp”-Messungen mittels der Saccharose-Trennwandmethode wurde die Inaktivierung des raschen Na-Einstroms am Froschvorhof bei Temperaturen zwischen 4 und 7° C untersucht.

  2. 2.

    Die Größe des Na-Stromes, der auf einem gegebenen Potentialniveau ausgelöst werden kann, ist eine S-Funktion des Vorpotentials (stationäre Inaktivierung). Bei Potentialen unterhalb −100 mV ist der Na-Strom maximal, bei Potentialen oberhalb −30 mV ist er praktisch Null.

  3. 3.

    In depolarisierenden Klemmen verläuft die Inaktivierung des Na-Stroms angenähert exponentiell mit Zeitkonstanten zwischen 1,5 und 8 msec.

  4. 4.

    Die Rückbildung der Inaktivierung (Reaktivierung des Na-Systems) nach einer Repolarisation oder Hyperpolarisation verläuft mit Zeitkonstanten zwischen 100 und 600 msec.

  5. 5.

    Bei kombinierter Messung der Inaktivierung und Reaktivierung auf gegebenem Potentialniveau (nach Potentialsprüngen von einem niedrigeren bzw. höheren Niveau aus) verhalten sich die Zeitkonstanten der beiden Vorgänge etwa wie 1∶50.

  6. 6.

    Im Aktionspotential des Froschvorhofs ist die langsame Reaktivierung des Na-Systems daran zu erkennen, daß die relative Refraktärzeit weit über die volle Repolarisation hinausreicht.

  7. 7.

    Der langsame Ablauf der Na-Reaktivierung ist wahrscheinlich nicht durch sekundäre Faktoren bedingt, sondern auf die molekulare Kinetik des Prozesses zu beziehen. Formal kann man die unterschiedliche Geschwindigkeit der Inaktivierung und Reaktivierung dadurch beschreiben, daß man die Variableh der Hodgkin-Huxley-Theorie durch zwei Variablen ersetzt, die in ihrer Zeitabhängigkeit stark differieren.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adelman, W. J., Jr., Palti, Y.: The influence of external potassium on the inactivation of sodium currents in the giant axon of the squid, Loligo pealei. J. gen. Physiol.53, 685–703 (1969).

    Google Scholar 

  • Antoni, H., Delius, W.: Nachweis von zwei Komponenten in der Anstiegsphase des Aktionspotentials von Froschmyokardfasern. Pflügers Arch. ges. Physiol.283, 187–202 (1965).

    Google Scholar 

  • Beeler, G. W., Jr., Reuter, H.: Voltage clamp experiments on ventricular myocardial fibres. J. Physiol. (Lond.)207, 165–190 (1970a).

    Google Scholar 

  • ——: Membrane calcium current in ventricular myocardial fibres. J. Physiol. (Lond.)207, 191–209 (1970b).

    Google Scholar 

  • ——: The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J. Physiol. (Lond.)207, 211–229 (1970c).

    Google Scholar 

  • Chandler, W. K., Hodgkin, A. L., Meves, H.: The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol. (Lond.)180, 821–836 (1965).

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: Excitatory membrane current in heart muscle (Purkinje fibers). Pflügers Arch. ges. Physiol.292, 255–273 (1966).

    Google Scholar 

  • Dudel, J., Rüdel, R.: Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflügers Arch.315, 136–158 (1970).

    Google Scholar 

  • Frankenhaeuser, B., Hodgkin, A. L.: The action of calcium on the electrical properties of squid axons. J. Physiol. (Lond.)137, 217–244 (1957).

    Google Scholar 

  • Giebisch, G., Weidmann, S.: Membrane currents in mammalian ventricular heart muscle fibres using a “voltage-clamp” technique. Helv. physiol. pharmacol. Acta25, CR 189–190 (1967).

    Google Scholar 

  • Haas, H. G., Kern, R.: Na inactivation and reactivation in cardiac muscle. Pflügers Arch.312, 28 (1969).

    Google Scholar 

  • ——: Einwächter, H. M.: Electrical activity and metabolism in cardiac tissue: An experimental and theoretical study. J. Membrane Biol.3, 180–209 (1970).

    Google Scholar 

  • Hagiwara, S., Nakajima, S.: Differences in Na and Ca spikes as examined by application of tetrodotoxin, procaine and manganese ions. J. gen. Physiol.49, 793–806 (1966).

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo. J. Physiol. (Lond.)116, 449–472 (1952a).

    Google Scholar 

  • ——: The components of membrane conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 473–496 (1952b).

    Google Scholar 

  • ——: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 497–506 (1952c).

    Google Scholar 

  • ——: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952d).

    Google Scholar 

  • Hoffman, B. F., Cranefield, P. F.: Electrophysiology of the heart. New York-Toronto-London: McGraw-Hill Book Company 1960.

    Google Scholar 

  • Mascher, D., Peper, K.: Two components of inward current in myocardial muscle fibers. Pflügers Arch.307, 190–203 (1969).

    Google Scholar 

  • Merideth, J., Mendez, C., Mueller, W. J., Moe, G. K.: Electrical excitability of atrioventricular nodal cells. Circulat. Res.23, 69–85 (1968).

    Google Scholar 

  • Niedergerke, R., Orkand, R. K.: The dual effect of calcium on the action potential of the frog's heart. J. Physiol. (Lond.)184, 291–311 (1966).

    Google Scholar 

  • Pillat, B.: Prolongation of the relative refractory period by drugs acting like quinidine; occurrence of propagated spikes in cardiac muscle. Helv. physiol. pharmacol. Acta25, 32–39 (1967).

    Google Scholar 

  • Rougier, O., Vassort, G., Garnier, D., Gargouil, Y. M., Corabœuf, E.: Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch.308, 91–110 (1969).

    Google Scholar 

  • ——, Stämpfli, R.: Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch. ges. Physiol.301, 91–108 (1968).

    Google Scholar 

  • Szekeres, L., Vaughan Williams, E. M.: Antifibrillatory action. J. Physiol. (Lond.)160, 470–482 (1962).

    Google Scholar 

  • Tarr, M., Haas, H. G., Trank, J.: Effects of manganese and tetrodotoxin on two inward currents in cardiac muscle. Physiologist12, 371 (1969).

    Google Scholar 

  • Weidmann, S.: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.)127, 213–224 (1955a).

    Google Scholar 

  • —: Effects of calcium ions and local anaesthetics on electrical properties of Purkinje fibres. J. Physiol. (Lond.)129, 568–582 (1955b).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Stiftung Volkswagenwerk and by grants from USPHS (N. HE 12426) and Kansas Heart Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haas, H.G., Kern, R., Einwächter, H.M. et al. Kinetics of Na inactivation in frog atria. Pflugers Arch. 323, 141–157 (1971). https://doi.org/10.1007/BF00586445

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586445

Key-Words

Schlüsselwörter

Navigation