Skip to main content
Log in

Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Zusammenfassung

Kleine Präparate von Purkinjefasern wurden auf 4–5°C abgekühlt um die Aktivierung des erregenden Natriumstromes so zu verlangsamen, daß dieser vom kapazitiven Membranstrom getrennt werden konnte. Obwohl das Membranruhepotential bei der niedrigen Temperatur auf −30 mV abnahm, ließ sich das Natriumsystem auslösen, wenn die Membran durch hyperpolarisierende Pulse konditioniert wurde. Mit der Spannungsklemmtechnik wurde die Membran in plötzlichen Rechtecksprüngen depolarisiert und die Natriumströme, die nach einer derartigen Depolarisation fließen, wurden in ihrer Abhängigkeit vom Ausgangssowie Endpotential bestimmt und einer Analyse nach Hodgkin und Huxley unterzogen. Die Ergebnisse konnten mit den Hodgkin-Huxley-Gleichungen befriedigend wiedergegeben werden, wenn auch die absoluten Werte und die Potentialabhängigkeit der Geschwindigkeitskonstanten von den für das Tintenfischaxon gefundenen Werten in charakteristischer Weise abwichen. Vor allem zeigteh , die Variable, die die Inaktivierung des Natriumsystems beschreibt, eine bemerkenswerte Potentialabhängigkeit bei dieser Temperatur, sie erreichte nämlich ihren Maximalwert erst bei −180 mV und field auf Null bei −100 mV. Der zeitliche Verlauf der Aufhbung der Inaktivierung zeigte eine ähnliche Abhängigkeit von Amplitude und Dauer des Ausgangspotentials wie sie für das Tintenfischaxon gefunden wurde. Das relativ niedrige Ausgangspotential von −110 mV mußte bis zu 10 s festgehalten werden um die Inaktivierung völlig aufzuheben. Der Abfall des Natriumstromes, der fließt, wenn man von verschiedenen Ausgangspotentialen auf dasselbe Endpotential depolarisiert, wird durch zwei Zeitkonstanten charakterisiert, im Gegensatz zu nur einer Zeitkonstante beim Tintenfischaxon. Durch Vergleich der Ergebnisse mit den Befunden einiger Experimente, die bei 20°C durchgeführt wurden, konnten Extrapolationen der Resultate auf Körpertemperatur gemacht werden. Sie lassen darauf schließen, daß bei 37°C das Natriumsystem an der Spitze des Aktionspotentials bereits weitgehend inaktiviert ist.

Summary

Very small Purkinje fibre preparations were cooled down to 4–5°C in order to slow the activation of the excitatory sodium current to such an extent that the latter could be separated from the capacitive membrane current. Although the resting potential of the membrane decreased to −30 mV at the low temperature, it was possible to trigger the sodium carrying system by conditioning the membrane with hyperpolarizing pulses applied under voltage clamp conditions. The sodium currents flowing after sudden depolarizations starting from various conditioning prepotentials and going to various clamp potentials were analyzed according to the Hodgkin-Huxley equations. It turned out that the results could be satisfactorily fitted by the equations, although the absolute values and the potential dependences of the rate constants differed from those found for the squid giant axon in a characteristic manner. Particularlyh, the variable describing the inactivation of the sodium carrying system, had a remarkable potential dependence at the low temperature extending from unity at a potential as high as −180 mV to zero at a potential −100 mV. The time course of the removal of inactivation showed a similar dependence on conditioning prepotential and time to that found for the squid giant axon. Conditioning pulses of up to 10 s were necessary to remove inactivation at a prepotential of −110 mV. The decay of the sodium current flowing after depolarizations from various conditioning prepotentials to the same clamp potential differed from that of the squid axon in a way that it could better be fitted by two time constants rather than one. By comparison of the data with those obtained from experiments carried out at 20°C extrapolations of the results to body temperature were made. These suggest that at 37°C the sodium carrying system should be almost entirely inactivated when the action potential reaches its crest.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Adelmann, W. J., Jr., Palti, Y.: Relation betweenK 0 and long duration voltage conditioning in determining inactivation levels in the squid giant axon. Biophys. J.9, SAM-H 4 (1969).

    Google Scholar 

  • Baker, P. F., Hodgkin, A. L., Meves, H.: The effect of diluting the internal solution on the electrical properties of a perfused giant axon. J. Physiol. (Lond.)170, 541–560 (1964).

    Google Scholar 

  • Brady, A. J., Woodbury, J. W.: The sodium-potassium hypothesis as the basis of electrical activity in frog ventricle. J. Physiol. (Lond.)154, 385–407 (1960).

    Google Scholar 

  • Chandler, W. K., Hodgkin, A. L., Meves, H.: The effect of changing the internal solution on sodium inactivation and related phenomena in giant axons. J. Physiol. (Lond.)180, 821–836 (1965).

    Google Scholar 

  • —, Meves, H.: Voltage clamp experiments on internally perfused giant axons. J. Physiol. (Lond.)180, 788–820 (1965).

    Google Scholar 

  • Chang, J. J., Schmidt, R. F.: Prolonged action potentials and regenerative hyperpolarization responses in Purkinje fibers of mammalian heart. Pflügers Arch. ges. Physiol.272, 127–141 (1960).

    Google Scholar 

  • Cole, K. S., Moore, J. W.: Ionic current measurement in the squid giant axon membrane. J. gen. Physiol.44, 123–167 (1960).

    Google Scholar 

  • Coraboeuf, E., Weidmann, S.: Temperature effects on the electrical activity of Purkinje fibers. Helv. physiol. pharmacol. Acta12, 32–41 (1954).

    Google Scholar 

  • Deck, K. A., Kern, R., Trautwein, W.: Voltage clamp technique in mammalian cardiac fibers. Pflügers Arch. ges. Physiol.280, 50–62 (1964).

    Google Scholar 

  • —, Trautwein, W.: Ionic currents in cardiac excitation. Pflügers Arch. ges. Physiol.280, 63–80 (1964).

    Google Scholar 

  • Délèze, J.: Perfusion of a strip of mammalian ventricle: effects of K-rich and Na-deficient solutions on transmembrane potentials. Circulat. Res.7, 461–465 (1959).

    Google Scholar 

  • —: Possible reasons for drop of resting potential of mammalian heart preparations during hypothermia. Circulat. Res.8, 553–557 (1960).

    Google Scholar 

  • Draper, M. H., Weidmann, S.: Cardiac resting and action potentials recorded with an intracellular electrode. J. Physiol. (Lond.)115, 74–94 (1951).

    Google Scholar 

  • Dudel, J., Peper, K., Rüdel, R., Trautwein, W.: Excitatory membrane current in heart muscle (Purkinje fibers). Pflügers Arch. ges. Physiol.292, 255–273 (1966).

    Google Scholar 

  • ————: The dynamic chloride component of membrane current in Purkinje fibers. Pflügers Arch. ges Physiol.295, 197–212 (1967).

    Google Scholar 

  • —, Rüdel, R.: Temperature dependence of electromechanical coupling in crayfish muscle fibers. Pflügers Arch. ges. Physiol.301, 16–30 (1968).

    Google Scholar 

  • ——: Potential- und Zeitabhängigkeit des erregenden Natriumstromes von gekühlten Purkinje-Fäden aus Schafsherzen. Pflügers Arch.307, R 33 (1969).

    Google Scholar 

  • Falk, G., Fatt, P.: Linear electrical properties of striated muscle fibres observed with intracellular electrodes. Proc. roy. Soc. B160, 69–123 (1964).

    Google Scholar 

  • Fozzard, H. A.: Membrane capacity of the cardiac Purkinje fibre. J. Physiol. (Lond.)182, 255–267 (1966).

    Google Scholar 

  • Frankenhaeuser, B.: Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)148, 671–676 (1959).

    Google Scholar 

  • —: Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)151, 491–501 (1960).

    Google Scholar 

  • —: Inactivation of the sodium-carrying mechanism in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)169, 445–451 (1963).

    Google Scholar 

  • —, Moore, L. E.: The effect of temperature on the sodium and potassium permeability changes in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)169, 431–437 (1963).

    Google Scholar 

  • Freygang, W. H., Trautwein, W.: The structural significance of the linear electrical properties of cardiac Purkinje strands. J. gen. Physiol. (in press) (1970).

  • Glitsch, H. G.: Über das Membranpotential des Meerschweinchenvorhofes nach Hypothermie. Pflügers Arch.307, 29–46 (1969).

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: The dual effect of membrane potential on sodium conductance in the giant axon of Loligo. J. Physiol. (Lond.)116, 497–506 (1952a).

    Google Scholar 

  • ——: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952b).

    Google Scholar 

  • Kaufmann, R., Fleckenstein, A.: Die Bedeutung der Aktionspotential-Dauer und der Ca++-Ionen beim Zustandekommen der positiv-inotropen Kältewirkungen am Warmblüter-Myokard. Pflügers Arch. ges. Physiol.285, 1–18 (1965).

    Google Scholar 

  • Mascher, D., Peper, K.: Zwei Einwärtskomponenten des Membranstromes im Myokard. Pflügers Arch.307, 32 (1969).

    Google Scholar 

  • Moore, J. W., Narahashi, R., Ulbricht, W.: Sodium conductance shift in an axon internally perfused with a sucrose and low-potassium solution. J. Physiol. (Lond.)172, 163–173 (1964).

    Google Scholar 

  • Narahashi, T.: Dependence of resting and action potentials on internal potassium in perfused squid giant axons. J. Physiol. (Lond.)100, 91–115 (1963).

    Google Scholar 

  • Noble, D.: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pacemaker potentials. J. Physiol. (Lond.)160, 317–352 (1962).

    Google Scholar 

  • —, Tsien, R. W.: Reconstruction of the repolarization process in cardiac Purkinje fibres based on voltage clamp measurements of membrane current. J. Physiol. (Lond.)200, 233–254 (1969).

    Google Scholar 

  • Page, E., Storm, S. R.: Cat heart muscle in vitro. VIII. Active transport of sodium in papillary muscles. J. gen. Physiol.48, 957–972 (1965).

    Google Scholar 

  • Reuter, H., Beeler, G. W., Jr.: Calcium current and activation of contraction in ventricular myocardial fibers. Science163, 399–401 (1969).

    Google Scholar 

  • Rougier, O., Vassort, G., Garnier, D., Gargouil, Y. M., Coraboeuf, E.: Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch.308, 91–100 (1969).

    Google Scholar 

  • —— Stämpfli, R.: Voltage clamp experiments on frog atrial heart muscle fibres with the sucrose gap technique. Pflügers Arch. ges. Physiol.301, 91–108 (1968).

    Google Scholar 

  • Trautwein, W., Gottstein, U., Federschmidt, K.: Der Einfluß der Temperatur auf den Aktionsstrom des excidierten Purkinje-Fadens, gemessen mit einer intracellulären Elektrode. Pflügers Arch. ges. Physiol.258, 243–260 (1953).

    Google Scholar 

  • Weidmann, S.: The effect of the cardiac membrane potential on the rapid availability of the sodium-carrying system. J. Physiol. (Lond.)127, 213–224 (1955).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dudel, J., Rüdel, R. Voltage and time dependence of excitatory sodium current in cooled sheep Purkinje fibres. Pflugers Arch. 315, 136–158 (1970). https://doi.org/10.1007/BF00586657

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00586657

Schlüsselwörter

Key-Words

Navigation