Skip to main content
Log in

Potassium inactivation in single myelinated nerve fibres of Xenopus laevis

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

  1. 1.

    Voltage clamp measurements were performed on single myelinated nerve fibres of the frog Xenopus laevis.

  2. 2.

    During long-lasting depolarizations the potassium current decayed in a fast phase with a time constant of about 0.6 sec and a following slow phase with a time constant between 3.6 (V=0) and 20 sec (V=100 mV).

  3. 3.

    The decay of the potassium current was the result of an inactivation of the potassium permeability and not of a shift of the potassium equilibrium potential as shown by experiments in isotonic KCl solution.

  4. 4.

    At a hyperpolarization of −20 mV the potassium inactivation was fully removed. It remained incomplete even at large depolarizations. The steady-state inactivation curve was S-shaped but not symmetrical.

  5. 5.

    The experimental results could be described by extending the Hodgkin-Huxley equations introducing two terms of potassium inactivation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, R. H., Chandler, W. K., Hodgkin, A. L.: Voltage clamp experiments in striated muscle fibres. J. Physiol. (Lond.)208, 607–644 (1970a).

    Google Scholar 

  • ———: Slow changes in potassium permeability in skeletal muscle. J. Physiol. (Lond.)208, 645–668 (1970b).

    Google Scholar 

  • Alving, B.: Differences between pacemaker and nonpacemaker neurons of Aplysia on voltage clamping. J. gen. Physiol.54, 512–531 (1969).

    Google Scholar 

  • Armstrong, C. M.: Inactivation of the potassium conductance and related phenomena caused by quaternary ammonium ion injection in squid axons. J. gen. Physiol.54, 553–575 (1969).

    Google Scholar 

  • Bennett, M. V. L., Grundfest, H.: Analysis of depolarizing and hyperpolarizing inactivation responses in gymnotid electroplaques. J. gen. Physiol.50, 141–169 (1966).

    Google Scholar 

  • Chandler, W. K., Meves, H.: Evidence for two types of sodium conductance in axons perfused with sodium fluoride solution. J. Physiol. (Lond.)211, 653–678 (1970).

    Google Scholar 

  • Dodge, F. A., Frankenhaeuser, B.: Membrane currents in isolated frog nerve fibre under voltage clamp conditions. J. Physiol. (Lond.)143, 76–90 (1958).

    Google Scholar 

  • ehrenstein, G., Gilbert, D. L.: Slow changes of potassium permeability in the squid giant axon. Biophys. J.6, 553–566 (1966).

    Google Scholar 

  • Frankenhaueser, B.: Steady state inactivation of sodium permeability in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)148, 671–676 (1959).

    Google Scholar 

  • —: Quantitative description of sodium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)151, 491–501 (1960).

    Google Scholar 

  • —: Delayed currents in myelinated nerve fibres of Xenopus laevis investigated with voltage clamp technique. J. Physiol. (Lond.)160, 40–45 (1962a).

    Google Scholar 

  • —: Instantaneous potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)160, 46–53 (1962b).

    Google Scholar 

  • — A quantitative description of potassium currents in myelinated nerve fibres of Xenopus laevis. J. Physiol. (Lond.)169, 424–430 (1963).

    Google Scholar 

  • —, Waltman, B.: Membrane resistance and conduction velocity of large myelinated nerve fibres from Xenopus laevis. J. Physiol. (Lond.)148, 677–682 (1959).

    Google Scholar 

  • Hagiwara, S., Kusano, K., Saito, N.: Membrane changes of Onchidium nerve cell in potassium-rich media. J. Physiol. (Lond.)155, 470–489 (1961).

    Google Scholar 

  • Hall, A. E., Hutter, O. F., Noble, D.: Current-voltage relation of Purkinje fibres in sodium-deficient solutions. J. Physiol. (Lond.)166, 225–240 (1963).

    Google Scholar 

  • Hecht, H. H., Hutter, O. F., Lywood, D. W.: Voltage-current relation of short Purkinje fibres in sodium-deficient solution. J. Physiol. (Lond.)170, 5–7p (1964).

    Google Scholar 

  • Hille, B.: The selective inhibition of delayed potassium currents in nerve by tetraethylammonium ion. J. gen. Physiol.50, 1287–1302 (1967).

    Google Scholar 

  • Hodgkin, A. L., Huxley, A. F.: A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. (Lond.)117, 500–544 (1952).

    Google Scholar 

  • Kao, C. Y., Stanfield, P. R.: Actions of some anions on electrical properties and mechanical threshold of frog twitch muscle. J. Physiol. (Lond.)198, 291–309 (1968).

    Google Scholar 

  • ——: Action of some cations on the electrical properties and mechanical threshold of frog sartorius muscle fibres. J. gen. Physiol.55, 620–639 (1970).

    Google Scholar 

  • Koppenhöfer, E.: Die Wirkung von Tetraäthylammoniumchlorid auf die Membranströme Ranvierscher Schnürringe von Xenopus laevis. Pflügers Arch. ges. Physiol.293, 34–55 (1967).

    Google Scholar 

  • —, Schmidt, H.: Die Wirkung von Skorpiongift auf die Ionenströme des Ranvierschen Schnürrings. II. Unvollständige Natrium-Inaktivierung. Pflügers Arch.303, 150–161 (1968).

    Google Scholar 

  • Leicht, R., Meves, H., Wellhöner, H. H.: Slow changes of membrane permeability in giant neurones of Helix pomatia. Pflügers Arch.323, 63–79 (1971).

    Google Scholar 

  • Lewis, R.: Potassium inactivation in frog nerve membrane. Life Sci.10, 251–258 (1971).

    Google Scholar 

  • Lüttgau, H. C.: Das Kalium-Transportsystem am Ranvier-Knoten isolierter markhaltiger Nervenfasern. Pflügers Arch. ges. Physiol.271, 613–633 (1960).

    Google Scholar 

  • Moore, L. E.: Membrane currents at large positive internal potentials in single myelinated nerve fibres of Rana pipiens. J. Physiol. (Lond.)193, 433–442 (1967).

    Google Scholar 

  • Mueller, P.: Prolonged action potentials from single nodes of Ranvier. J. gen. Physioll.42, 137–162 (1958).

    Google Scholar 

  • Nakajima, S., Kusano, K.: Behavior of delayed current under voltage clamp in the supramedullary neurons of puffer. J. gen. Physiol.49, 613–628 (1966).

    Google Scholar 

  • Nakamura, Y., Nakajima, S., Grundfest, H.: Analysis of spike electrogenesis and depolarizing K inactivation in electroplaques of Electrophorus electricus, L. J. gen. Physiol.49, 321–349 (1965).

    Google Scholar 

  • Neher, E., Lux, H. D.: Properties of somatic membrane patches of snail neurons under voltage clamp. Pflügers Arch.322, 35–38 (1971).

    Google Scholar 

  • Stanfield, P. R.: The effect of tetraethylammonium ion on the delayed currents of frog skeletal muscle. J. Physiol. (Lond.)209, 209–229 (1970).

    Google Scholar 

  • Schwarz, J., Vogel, W.: Inaktivierung der Kaliumpermeabilität markhaltiger Nervenfasern. Pflügers Arch.319, R 105 (1970).

    Google Scholar 

  • ——: Potassium inactivation in myelinated nerve fibres. Experientia (Basel)27, 397–398 (1971).

    Google Scholar 

  • Tsien, R. W., Noble, D.: A transition state approach to the kinetics of conductance changes in excitable membranes. J. Membrane Physiol.1, 248–273 (1969).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was supported by the Deutsche Forschungsgemeinschaft.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schwarz, J.R., Vogel, W. Potassium inactivation in single myelinated nerve fibres of Xenopus laevis. Pflugers Arch. 330, 61–73 (1971). https://doi.org/10.1007/BF00588735

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00588735

Key-Words

Navigation