Skip to main content
Log in

Anoxia-recovery cycle in ventricular muscle: Action potential duration, contractility and ATP content

  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Summary

The action potential duration, tension, time to peak tension, mean rate of tension development, and ATP content of guinea pig ventricular muscle declined during 60 min of anoxic incubation. The decline in tension was closecorrelated with the decline in mean rate of tension development, whereas time to peak tension decreased in an S-shaped relationship with action potential duration decrease. When muscles were incubated under anoxic conditions for 5, 30, or 60 min then under control conditions for 30 min, the action potential duration and time to peak tension returned to control level; tension, mean rate of development, and ATP content did not recover to control level when the period of anoxia exceeded 5 min. During the first 10 min of re-oxygenation a transient overshoot of control value was noted in action potential duration and time to peak tension. The transient increase in time to peak tension was accompanied by a transient increase in tension. It was not dependent on the occurrence, or degree, of overshoot in action potential duration. Transient changes did not occur in mean rate of tension development.

It has been concluded that the anoxia-induced decrease in tension is due to a decrease in the rate of tension development as a result of a decreased ATP suppl. Time to peak tension seems related to action potential duration and both are independent oftotal muscle ATP content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bárány, M.: ATPase activity of myosin correlated with speed of muscle shortening. J. gen. Physiol. Suppl.50, 197–217 (1967).

    Google Scholar 

  • — Gaetjens, E., Bárány, K., Karp, E.: Comparative studies of rabbit cardiac and skeletal myosins. Arch. Biochem.106, 280–293 (1964).

    Google Scholar 

  • Beeler, G. W., Jr., Reuter, H.: The relation between membrane potential, membrane currents, and activation of contraction in ventricular myocardial fibres. J. Physiol. (Lond.)207, 211–229 (1970).

    Google Scholar 

  • Benson, E. S., Evans, G. T., Hallaway, B. E., Phibbs, C., Freier, E. T.: Myocardial creatine phosphate and nucleotides in anoxic cardiac arrest and recovery. Amer. J. Physiol.201, 687–693 (1961).

    Google Scholar 

  • Bing, R. J., Gudbjarnason, S., Ischopp, H., Braasch, W.: Molecular changes in myocardial infarction in heart muscle. Ann. N. Y. Acad. Sci.156, 583–592 (1969).

    Google Scholar 

  • Braasch, W., Gudbjarnason, S., Puri, P. S., Ravens, K. G., Bing, R. J.: Early changes in energy metabolism in the myocardium following acute coronary artery occlusion in anesthetized dogs. Circulat. Res.23, 429–438 (1968).

    Google Scholar 

  • Braveny, P., Šumbera, J.: Electromechanical correlations in the mammalian heart muscle. Pflügers Arch.319, 36–48 (1970).

    Google Scholar 

  • Buccino, R. A., Sonnenblick, E. H., Spann, J. F., Friedman, W. F., Braunwald, E.: Interactions between changes in the intensity and duration of the active state in the characterization of inotropic stimuli on heart muscle. Circulat. Res.21, 857–867 (1967).

    Google Scholar 

  • Cingolani, H. E., Mattiazzi, A. R., Blesa, E. S., Gonzalez, N. C.: Contractility in isolated mammalian heart muscle after acid-base changes. Circulat. Res.26, 269–278 (1970).

    Google Scholar 

  • Dettli, L., Bing, R. J.: Contractility and extractibility of heart actomyosin after death. Circulat. Res.4, 519–522 (1956).

    Google Scholar 

  • Feinstein, M. B.: Effects of experimental congestive heart failure, ouabain, and asphyxia on the high-energy phosphate and creatine content of the guinea pig heart. Circulat. Res.10, 333–346 (1962).

    Google Scholar 

  • Hercus, V. M., McDowall, R. J. S., Mendel, D.: Sodium exchanges in cardiac muscle. J. Physiol. (Lond.)129, 177–183 (1955).

    Google Scholar 

  • Hunter, E., G. McDonald, T. F., MacLeod, D. P.: Metabolic depression and myocardial potassium. Submitted for publication (1971).

  • Jewell, B. R., Blinks, J. R.: Drugs and the mechanical properties of heart muscle. Ann. Rev. Pharmacol.8, 113–130 (1968).

    Google Scholar 

  • Katz, A. M.: Contractile proteins of the heart. Physiol. Rev.50, 63–158 (1970).

    Google Scholar 

  • Lindenmayer, G. E., Sordahl, L. A., Schwartz, A.: Reevaluation of oxidative phosphorylation in cardiac mitochondria from normal animals and animals in heart failure. Circulat. Res.23, 439–450 (1968).

    Google Scholar 

  • Luchi, R. J., Kritcher, E. M.: Impaired cardiac myosin enzyme activity in acute anoxia. Circulation36, Suppl. II, 175–175 (1967).

    Google Scholar 

  • McDonald, T. F., Hunter, E. G., MacLeod, D. P.: Adenosinetriphosphate partition in cardiac muscle with respect to transmembrane electrical activity. Pflügers Arch.322, 95–108 (1971).

    Google Scholar 

  • MacLeod, D. P., Daniel, E. E.: Influence of glucose on the transmembrane action potential of anoxic papillary muscle. J. gen. Physiol.48, 887–899 (1965).

    Google Scholar 

  • —, Prasad, K.: Influence of glucose on the transmembrane action potential of papillary muscle. Effects of concentration, phlorizin and insulin, non-metabolizable sugars, and stimulators of glycolysis. J. gen. Physiol.53, 792–815 (1969).

    Google Scholar 

  • Morad, M., Trautwein, W.: The effect of the duration of the action potential on contraction in the mammalian heart muscle. Pflügers Arch. ges. Physiol.299, 66–82 (1968).

    Google Scholar 

  • Pool, P. E., Sonnenblick, E. H.: The mechanochemistry of cardiac muscle. I. The isometric contraction. J. gen. Physiol.50, 951–965 (1967).

    Google Scholar 

  • Prasad, K., MacLeod, D. P.: Influence of glucose on the transmembrane action potential of guinea pig papillary muscle. Metabolic inhibitors, ouabain, CaCl2, and their interaction with glucose, sympathomimetic amines, and aminophylline. Circulat. Res.24, 939–950 (1969).

    Google Scholar 

  • Rougier, O., Vassort, G., Garnier, D., Gargoülil, Y. M., Coraboeuf, E.: Existence and role of a slow inward current during the frog atrial action potential. Pflügers Arch.308, 91–100 (1969).

    Google Scholar 

  • Sandow, A.: Skeletal muscle. Ann. Rev. Physiol.32, 87–138 (1970).

    Google Scholar 

  • Schädler, M. H.: Proportionale Aktivierung von ATPase-Aktivität und Kontraktionsspannung durch Calciumionen in isolierten contractilen Strukturen verschiedener Muskelarten. Pflügers Arch. ges. Physiol.296, 70–90 (1967).

    Google Scholar 

  • Scheuer, J., Stezoski, S. W.: Effects of high-energy phosphate depletion and repletion on the dynamics and electrocardiogram of isolated rat hearts. Circulat. Res.23, 519–530 (1968).

    Google Scholar 

  • Sobel, B. E., Spann, J. F., Pool, P. E., Sonnenblick, E. H., Braunwald, E.: Normal oxidative phosphorylation in mitochondria from the failing heart. Circulat. Res.21, 355–363 (1967).

    Google Scholar 

  • Sonnenblick, E. H.: Active state in heart muscle. Its delayed onset and modification by inotropic agents. J. gen. Physiol.50, 661–667 (1967).

    Google Scholar 

  • Stanley, P. E., Williams, S. G.: Use of liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Analyt. Biochem.29, 381–392 (1969).

    Google Scholar 

  • Strehler, B. L., McElroy, W. D.: Assay of adenosine triphosphate. In: Methods of Enzymology. Vol. 3, p. 871. S. P. Colowick and N. O. Kaplan, edit. New York: Academic Press Inc. 1957.

    Google Scholar 

  • Trautwein, W., Dudel, J.: Aktionpotential und Kontraktion des Herzmuskels im Sauerstoffmangel. Pflügers Arch. ges. Physiol.263, 23–32 (1956).

    Google Scholar 

  • Tyberg, J.B., Parmley, W. W., Sonnenblick, E. H.: In vitro studies of myocardial asynchrony and regional hypoxia. Circulat. Res.25, 569–579 (1969).

    Google Scholar 

  • Williamson, J. R.: Glycolytic control mechanisms. II. Kinetics of intermediate changes during the aerobic-anoxic transition in perfused rat heart. J. biol. Chem.241, 5026–5036 (1966).

    Google Scholar 

  • Wollenberger, A., Krause, E. G.: Metabolic control characteristics of the acutely ischemic myocardium. Amer. J. Cardiol.22, 349–359 (1968).

    Google Scholar 

  • Wood, E. H., Heppner, R.L., Weidmann, S.: Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current current impulses applied during cardiac action potentials. II. Hypothesis: Calcium movements, excitation-contraction coupling and inotropic effects. Circulat. Res.24, 409–445 (1969).

    Google Scholar 

  • Woodbury, J. W., Brady, A. J.: Intracellular recording from moving tissue with a flexibly mounted ultramicroelectrode. Science123, 100–101 (1956).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by grants from the Canadian and Nova Scotia Heart Foundations and the Medical Research Council of Canada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mcdonald, T.F., MacLeod, D.P. Anoxia-recovery cycle in ventricular muscle: Action potential duration, contractility and ATP content. Pflugers Arch. 325, 305–322 (1971). https://doi.org/10.1007/BF00592172

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00592172

Key Words

Navigation