Skip to main content
Log in

Mass transfer characteristics of electrochemical reactors employing gas evolving mesh electrodes

  • Papers
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

Mass transfer rates were measured at a single screen and a fixed bed of closely packed screens for the simultaneous cathodic reduction of K3Fe(CN)6 and anodic oxidation of K4Fe(CN)6 in alkaline solution with H2 and O2 evolution, respectively. Variables studied were gas discharge rate, number of screens per bed and position of the electrode (vertical and horizontal). For single screen electrodes, the mass transfer coefficient was related to the gas discharge rate by the equations:

$$\begin{gathered} K = aV^{0.190} , for H_2 evolving electrodes, \hfill \\ K = aV^{0.469} , for O_2 evolving electrodes \hfill \\ \end{gathered} $$

. Electrode position was found to have no effect on the rate of mass transfer for single and multiscreen electrodes in the case of H2 and O2 evolution. Mass transfer coefficients were found to increase with an increasing number of screens per bed in the case of H2 evolution, while in the case of O2 evolution the mass transfer coefficient decreased with an increasing number of screens per bed. A mathematical model was formulated to account for the behaviour of the H2 evolving electrode which, unlike the O2 evolving electrode, did not obey the penetration model. Power consumption calculations have shown that the beneficial effect of mass transfer enhancement is outweighed by the increase in the voltage drop due to gas evolution in the bed electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

a, ā :

constants

A :

electrode area, cm2

C :

concentration, mol cm−3

D :

diffusivity, cm2s−1

F :

Faraday's constant

g :

gravitational acceleration cm s−2

Gr :

Grashof number,Gr=(gL 3/v 2)(Δρ/\(\bar \rho\))

i :

current, A

K :

mass transfer coefficient, cm s−1

L :

electrode length, cm

Sc :

Schmidt number,Sc=μ/ρD

Sh :

Sherwood number,Sh=KL/D

V :

gas volume discharge rate, cm3 cm−2 min−1

Z :

number of electrons in reaction

ε :

void fraction

μ :

viscosity, g cm−1 s−1

v :

kinematic viscosity cm2 s−1

ρ :

density, g cm−3

g:

gas phase (subscript)

l:

liquid phase (subscript)

References

  1. A. A. Wragg and L. L. R. Whiteley, Extended Abstracts, 32nd Meeting of SIE, Dubrovnik, Yugoslavia, September 1981, p. 1106, V.II.

  2. C. L. Lopez-Cacicedo,Trans. Inst. Met. Finishing 53 (1975) 74.

    Google Scholar 

  3. Idem, Inst. Chem. Eng. Symp. Ser. No. 42 (1975) 29.

    Google Scholar 

  4. Idem, Proceedings of the Symposium on Less Common Uses of Electricity in the Process Industries, Institution of Chemical Engineers, July (1979).

  5. C. Chou and J. C. Chang,Chem. Eng. Sci. 35 (1980) 1581.

    Google Scholar 

  6. B. Surfleet and V. A. Crowle,Trans. Inst. Met. Finishing 50 (1972) 227.

    Google Scholar 

  7. L. W. Shemilt and G. H. Sedahmed,J. Appl. Electrochem. 6 (1976) 471.

    Google Scholar 

  8. G. H. Sedahmed and L. W. Shemilt, to be published.

  9. A. A. Wragg,Int. J. Heat Mass Transfer 11 (1968) 979.

    Google Scholar 

  10. G. H. Sedahmed,J. Appl. Electrochem. 8 (1978) 399.

    Google Scholar 

  11. R. Alkire and B. Gracon,J. Electrochem. Soc. 122 (1975) 1594.

    Google Scholar 

  12. R. E. Sioda,Electrochim. Acta 15 (1970) 783.

    Google Scholar 

  13. Idem, ibid. 17 (1972) 1939.

    Google Scholar 

  14. Idem, ibid. 22 (1977) 439.

    Google Scholar 

  15. R. E. Sioda,J. Appl. Electrochem. 7 (1977) 135.

    Google Scholar 

  16. Idem, J. Electroanal. Chem. 34 (1972) 411.

    Google Scholar 

  17. A. Storck, P. M. Robertson and N. Ibl,Electrochim. Acta 24 (1979) 373.

    Google Scholar 

  18. J. Cano and U. Böhm,Chem. Eng. Sci. 32 (1977) 213.

    Google Scholar 

  19. M. A. Shah and D. Roberts, Advances in Chemistry, Series 133 — Chemical Reaction Engineering II (1974).

  20. B. Gay and R. Maugham,Int. J. Heat Mass Transfer 6 (1963) 277.

    Google Scholar 

  21. C. N. Satterfield and D. H. Cortez,Ind. Eng. Chem Fundamentals 9 (1970) 613.

    Google Scholar 

  22. P. H. Vogtlander and C. A. P. Bakker,Chem. Eng. Sci. 18 (1963) 583.

    Google Scholar 

  23. E. Sutzkover, C. Zur and M. Ariel,Israel J. Chem. 18 (1979) 99.

    Google Scholar 

  24. W. J. Blaedel and S. L. Boyer,Anal. Chem. 45 (1973) 258.

    Google Scholar 

  25. M. G. Fouad and G. H. Sedahmed,Electrochim. Acta 20 (1975) 615.

    Google Scholar 

  26. N. Ibl, R. Kind and E. Adam,An. Quim. 71 (1975) 1008.

    Google Scholar 

  27. L. J. J. Janssen and J. G. Hoogland,Electrochim. Acta 18 (1973) 543.

    Google Scholar 

  28. Idem, ibid. 15 (1970) 1012.

    Google Scholar 

  29. N. Ibl and J. Venczel,Metalloberfläche 24 (1970) 365.

    Google Scholar 

  30. H. Vogt, PhD thesis, Stuttgart (1977).

  31. A. I. Vogel, ‘A Textbook of Quantitative Analysis’, 2nd edn., Longmans (1960).

  32. J. C. Armour and J. N. Cannon,AIChE J. 14 (1968) 415.

    Google Scholar 

  33. R. Alkire and P. Y. Lu,J. Electrochem. Soc. 126 (1979) 2118.

    Google Scholar 

  34. L. J. J. Janssen,Electrochim. Acta 23 (1978) 81.

    Google Scholar 

  35. L. J. J. Janssen and E. Barendrecht,ibid. 24 (1979) 693.

    Google Scholar 

  36. L. J. J. Janssen and S. J. D. Van Stralen,ibid. 26 (1981) 1011.

    Google Scholar 

  37. M. G. Fouad and G. H. Sedahmed,ibid. 17 (1972) 665.

    Google Scholar 

  38. Idem, ibid. 18 (1973) 55.

    Google Scholar 

  39. Idem, ibid. 19 (1974) 861.

    Google Scholar 

  40. G. H. Sedahmed, I. A. S. Mansour, A. A. Zatout and N. A. Abdel-Hay,J. Appl. Electrochem. 10 (1980) 543.

    Google Scholar 

  41. G. H. Sedahmed, A. A. Zatout, I. A. S. Mansour and N. A. Abdel-Hay,Surf. Technol. 11 (1980) 61.

    Google Scholar 

  42. J. Rousar and V. Cezner,Electrochim. Acta 20 (1975) 289.

    Google Scholar 

  43. P. V. Polyakov, V. M. Shestakov, V. V. Burnakin and Y. M. Ryabukhin,Electrokhimya 16 (1980) 685.

    Google Scholar 

  44. F. O. Mixon, W. Y. Chou and K. O. Beatty,Heat Transfer 56 (1960) 75.

    Google Scholar 

  45. J. R. Selman and C. W. Tobias,Advan. Chem. Eng. 10 (1978) 211.

    Google Scholar 

  46. N. Zuber,Int. J. Heat Mass Transfer 6 (1963) 53.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sedahmed, G.H., Shemilt, L.W. Mass transfer characteristics of electrochemical reactors employing gas evolving mesh electrodes. J Appl Electrochem 14, 123–130 (1984). https://doi.org/10.1007/BF00611269

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00611269

Keywords

Navigation